Midterm 2 Version A

UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt Date: 26 February 2017

- This exam has 4 questions, for a total of 34 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.

Name:	STEVEN LA	
ID number:	r: Millenstelle Library	

Discussion section (please circle):

Day/TA	HUNT, CHRISTOPHER	HAN, KYUTAE	MENEZES, DEAN
Tuesday	1A	1C	(1E)
Thursday	1B	1D	1F

Question	Points	Score	
1	12	12	2.0
2	8	8	20
3	6	6.	13
4	8	1	
Total:	34	33	34

Please note! The following two pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	В	C	D	
(a)				\checkmark	
(b)			/		
(c)			/		
(d)		V			
(e)				V	
(f)			/		

(d) (2 points) Let G = (V, E) be a simple graph and $v \in V$ a vertex in G. Let a(v) be the number of vertices adjacent to v and $\delta(v)$ the number of edges incident to v. Then

A. $\delta(v) > a(v)$ B. $\delta(v) = a(v)$ C. $\delta(v) \ge a(v)$

D. $\delta(v) \le a(v)$

(e) (2 points) Which of the following is a linear homogeneous recurrence relation?

 $B. \, \overline{a}_n = a_{n-1} + 3\overline{a}_0$

LHRR

 $-C - a_n = a_{n-1}^2$ $\widehat{D. a_n} = 3(a_{n-1} + a_{n-3}) + 5a_{n-2}$

 $a_{n} = 3a_{n-1} + 3a_{n-3} + 5a_{n-2}$

(f) (2 points) Let $G = K_{n,m}$ be the complete bipartite graph on n and m vertices. Then G has an Euler cycle if and only if

A. h and m are odd B. n+m is even

C. p and m are even

n+m is odd

m=3

2. In the following questions, simply write down your answer. There is no justification needed. You can specify paths in simple graphs by a sequence of vertices. Consider the following graph G.

(a) (2 points) Find a simple cycle in G with four edges containing 1 and 4.

(b) (2 points) Is G bipartite?

(c) (2 points) Remove as many edges from the graph G as possible, such that the graph stays connected. How many edges are left in the end? (You are not allowed to remove vertices!)

(d) (2 points) Let K_n be the complete graph on n vertices. How many edges does K_n have?

 $0 \qquad o \qquad n=1$ $1 \qquad o \qquad n=2$

3. Consider the following recurrence relation

on
$$a_n = -a_{n-1} + 2a_{n-2}$$

 $a_0 = 0, a_1 = 1.$

with initial conditions

Solve the recurrence relation in three steps.

(a) (2 points) Determine the characteristic polynomial and its roots.

Char. Poly:
$$X^2-C_1X-C_2$$
, $C_1=-1$, $C_2=2$
 $X^2-(-1)X-2$
 $X^2+X-2=0$
 $(x+2)(x-1)=0$

Roots $3-2$, 1

(b) (2 points) Determine the general solution.

Suce ne have 2 district real roots,

So =
$$Q_0 = Q_0 =$$

4. (8 points) Apply the next two iterations of Dijkstra's algorithm to find the shortest path from a to z in the following graph. In each step, annotate each vertex x with L(x) and P(x), as shown. Circle the vertices already visited. Use the provided blank graphs. If you make a mistake, clearly cross it out and continue using the next blank graph.

