Midterm 2 Version B

UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt Date: 26 February 2017

- This exam has 4 questions, for a total of 34 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.

Name: _					
ID number:	,		parability of the street, and		
Diamosian sastian (also	an aimala).				

Discussion section (please circle):

Day/TA	HUNT, CHRISTOPHER	HAN, KYUTAE	MENEZES, DEAN
Tuesday			
Thursday			

		-
Question	Points	Score
1	12	12
2	6	6
3	8	8
4	8.	8
Total:	34	34

Please note! The following two pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	В	C	D
(a)	Y.	X		
(b)		X		
(c)		X	K	
(d)	K			X
(e)		乂		
(f)	X		X	

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (2 points) The coefficient of $a^{10}b^{20}$ in the expansion of

$$(a+b)^{30}$$

equals

A.
$$C(30+10-1,10-1)$$

B. $C(30,10)$
C. $C(20,10)$
D. $C(30+20-1,20-1)$

(b) (2 points) Let $a_n = a_{n-1} + 2^n$ and $a_0 = 1$. Then a_{100} equals

A.
$$2^{100} + 1$$
B. $2^{101} - 1$

C.
$$2^{101} + 1$$

D.
$$2^{100} - 1$$

C.
$$2^{101} + 1$$

D. $2^{100} - 1$
 $a_n = a_0 + 2 + 2^2 + ... = 2^n = 2^{n+1} - 2$

(c) (2 points) Which of the following is a linear homogeneous recurrence relation?

A.
$$a_n = 5a_{n-1} + na_{n-3}$$

B.
$$a_n = 3(a_{n-1} + a_{n-3}) + 5a_{n-2}$$

C.
$$a_n = a_{n-1} + 3a_0$$
 not homogeneous?

D.
$$a_n = a_{n-1}^2 \times \text{not linear}$$

- A. n and m are odd
- B. n+m is even
- C. n+m is odd
- D. n and m are even

(e) (2 points) Let X, Y be finite sets and $f: X \to Y$ a function. Under which conditions can you ensure that there are n distinct $x_1, x_2, \ldots, x_n \in X$, such that $f(x_1) = f(x_2) = \cdots = f(x_n)$.

A. $n|X| < |Y| \times$ B. $|X| > n|Y| \times$ C. $n|X| > |Y| \times$ D. $|X| < n|Y| \times$

h=1

(f) (2 points) Let G = (V, E) be a simple graph and $v \in V$ a vertex in G. Let a(v) be the number of vertices adjacent to v and $\delta(v)$ the number of edges incident to v. Then

- - $B. \ \delta(v) > a(v)$
 - C. $\delta(v) \geq a(v)$
 - D. $\delta(v) \le a(v)$

so only one edge commons

2. Consider the following recurrence relation

$$a_n = -a_{n-1} + 2a_{n-2}$$

with initial conditions

$$a_0 = 0, a_1 = 1.$$

Solve the recurrence relation in three steps.

(a) (2 points) Determine the characteristic polynomial and its roots.

(b) (2 points) Determine the general solution.

$$\int S_n = a(-2)^n + b1^n = a(-2)^n + b$$

(c) (2 points) Determine the solution fulfilling the initial conditions.

$$0 = a+b
0 = 2a+b
1 = -2a+b
1 = -2a$$

3. In the following questions, simply write down your answer. There is no justification needed. You can Consider the following graph G.

(a) (2 points) Find a simple cycle in G with four edges containing 1 and 4. No represented edges or

(b) (2 points) Is G bipartite?

(c) (2 points) Remove as many edges from the graph G as possible, such that the graph stays connected. How many edges are left in the end? (You are not allowed to remove vertices!)

(d) (2 points) Let K_n be the complete graph on n vertices. How many edges does K_n have?

4. (8 points) Apply the next two iterations of Dijkstra's algorithm to find the shortest path from a to z in the following graph. In each step, annotate each vertex x with L(x) and P(x), as shown. Circle the vertices already visited. Use the provided blank graphs. If you make a mistake, clearly cross it out and continue using the next blank graph.

