Midterm 1 (Version B)
UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt
Date: 02 February 2017

e This exam has 4 questions, for a total of 36 points.

e Please print your working and answers neatly.

o Write your solutions in the space provided showing working.
e Indicate your final answer clearly.

e You may write on the reverse of a page or on the blank pages found at the back of the booklet however
these will not be graded unless very clearly indicated.
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Please note! The following two pages will not be graded. You must indicate your answers here for them to
be graded!
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@ | | V]
o W[ ][




UCLA: Math 61

e ————— e —— e

Midterm 1 Version B Winter, 2018

—

1. Each of the following questions has exactly one correct answer. Choose from the four options presented

in each case. No partial points will be given.

(a) (2 points) Let X = {0,1,2,3)}. For a set Y denote by P(Y) = {S|S is a subset of Y'} the power set

of X. Then
A |P(X x X)|=2-16 Yx
(X % X)|=2°

C. I PXxX)=2-8
D. |IP(X x X)| =28

161
(b) (2 points) Let n > 1 be a positive integer. Then - : ¥ 13
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(c) (2 points) Define a partition P on {0,1,2,3} by
P = {{0},{1,3},{2}}.

Let Rp be the associated equivalence relation on {0,1,2,3}. Then
(B Rp=1{(0,0),(1,1),(2,2),(3,3),(1,3),(3, 1)
B. Rp ={(0,0),(1,3),(3,1),(2,2)}

C. Rp = {{0},{1,3},{2}}
D. Rp ={0,1,2,3)
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(d) (2 points) Let X = {1,2,3}, then R = {(1,3),(2,2),(3,1)} is
A’ not symmetric
" B. reflexive )
@bijective Q

antisymmetric (‘ /A 4

Winter, 2018

(e) (2 points) Let X = {a,b}. Denote by XZ? the set of all strings over X of length bigger or equal

than three and by X* the set of all strings over X. Then

@ X+ — X22 =5z'x‘52[ Q, L/ OIL, LA ’)
B. |X* - X2%| = /
C. [X* - X2 =

D. |X* - X2%| =

(f) (2 points) Let X =Z_ ¢ = {0,1,2,...}. Define an equivalence relation H on X by:

zRy if z ~ y is divisible by 3.

Then the partition Pp associated to the relation H is:
A Pp = 110,3,6,...},{1,4,7,... },{2,5,8,... }}
B. Pr=1{{0,2,4,...},{1,3,5,... }}
C. Pr={{0},{1},12},...}
D. Py = {(0,0),(0,3),(3,0)...,(3,3),(3,6),(6,3),. ..,
(1,1),(1,4),(4,1),...,(4,4 ,E4,7)(7,4),...,
D

)
(292)$ (2,5)1 (5’2)$ ’e g (‘59' )’ 5’8)(8’5) n }
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2. (6 points) Prove by induction that

n

Z(Z: n)=n

g=1

for any integer n > 1.

Hint: Use " "
}:(2‘ (n+1)) (2(21 n)) (n+1).
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3. In the following questions, simply write down your answer. There is no justification needed. Do not
simplify expressions as 24,6!,C(n,r),....
(a) (2 points) Let X = {1,2,3,4,5,6}. Determine the number of elements of the following set

{S|S is a subset of X and S| = 4}

(/

(b) (2 points) Determine the number of 5-bit strings starting in 101.
\ 0

==

D Z 1
'22 \//
(c) (2 points) Determine the number of 5-bit strings ending in 010.

' 0O (O

— eme—n .

=3 4
7 _

(e) (2 points) You have three friends: Rocco, Gina and Hans. And you have seven different sweets: a
popsicle, a piece of apple pie, a chocolate bar, a Berliner, a jelly doughnut, a marshmallow and a

, lemon drop.
You want to give two sweets to Rocco, three to Gina and two to Hans. In how many ways could

you do this?
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lain why. If an answer

4. Answer the following questions, justifying your answers. (If an answer i Yes, exp
is No, give a counterexample.)

(a) (2 points) Let X = {a,b,¢c,.--, 2} be the alphabet. Let o and B be strings over X. Is

rNO/ le} - &/'g;l; /
(X B=al)2 (Bx=ba)

(c) (2 points) Let X ={1,2,3,4}and ¥ = {a,b,c,d}. Is there a bijective function f: X — Y7

Y&, le# F"X-?Y be WCﬂ"'&/ L), H{, C',[va (N w du})/tw
&%LMMG‘MW Lackh X EX mafs 10 & dfﬂm? ye Y s b Fed
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\ /:'ucl-g 4 IO I & yey M~4./C @W‘h AN F(/&):«'\/TI‘(/ F\/Md'fDAfS Sy‘rje(,l)"’&
_‘_____'__—_.a

e

(d) (2 poiuts) Define f : R = Rxo,z ~ 2. Is f surjective?
2 bor all yeX the/ exsts an XeX such W Fo)=y
ok y=xt, xerly Ky
(=) =y B




