Midterm 1 (Version B)

UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt Date: 02 February 2017

- This exam has 4 questions, for a total of 36 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.

Name: Tunish Ambulkar	
ID number: 104-927-155	

Discussion section (please circle):

Day/TA	HUNT, CHRISTOPHER	HAN, KYUTAE	MENEZES, DEAN
Tuesday	1A	1C	1E
Thursday	1B	1D	(1F)

Question	Points	Score
1	12	10
2	6	6
3	10	10
4	8	8
Total:	36	34

Please note! The following two pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	В	С	D
(a)				
(b)				V
(c)				
(d)				
(e)	1			
(f)	1			

is equal to

A'(3n)!

B. $3^{n} \frac{n(n+1)}{2}$

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (2 points) Let $X = \{0, 1, 2, 3\}$. For a set Y denote by $\mathcal{P}(Y) = \{S | S \text{ is a subset of } Y\}$ the power set of X. Then

A.
$$|\mathcal{P}(X \times X)| = 2 \cdot 16$$

B. $|\mathcal{P}(X \times X)| = 2^{16}$

C.
$$|\mathcal{P}(X \times X)| = 2 \cdot 8$$

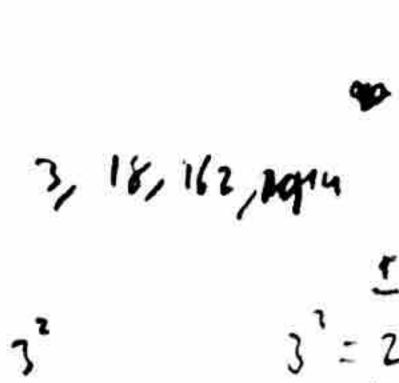
C.
$$|\mathcal{P}(X \times X)| = 2 \cdot 8$$

D.
$$|\mathcal{P}(X \times X)| = 2^8$$

(b) (2 points) Let $n \ge 1$ be a positive integer. Then

$$\prod_{i=1}^{n} 3i = 3.6.9$$

34.41



34=81

(c) (2 points) Define a partition \mathcal{P} on $\{0, 1, 2, 3\}$ by

$$\mathcal{P} = \{\{0\}, \{1,3\}, \{2\}\}.$$

Let $R_{\mathcal{P}}$ be the associated equivalence relation on $\{0, 1, 2, 3\}$. Then

$$\widehat{A}$$
 $R_{\mathcal{P}} = \{(0,0), (1,1), (2,2), (3,3), (1,3), (3,1)\}$

B.
$$R_{\mathcal{P}} = \{(0,0), (1,3), (3,1), (2,2)\}$$

C.
$$R_{\mathcal{P}} = \{\{0\}, \{1,3\}, \{2\}\}$$

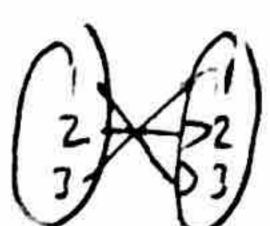
D.
$$R_{\mathcal{P}} = \{0, 1, 2, 3\}$$

(d) (2 points) Let $X = \{1, 2, 3\}$, then $R = \{(1, 3), (2, 2), (3, 1)\}$ is

A: not symmetric

B. reflexive

(A)bijective antisymmetric



(e) (2 points) Let $X = \{a, b\}$. Denote by $X^{\geq 3}$ the set of all strings over X of length bigger or equal

(A)
$$|X^{\bullet} - X^{\geq 3}| = 5 = |\chi^{\leq 2}|$$

B.
$$|X^{\bullet} - X^{\geq 3}| = 6$$

C.
$$|X^* - X^{\geq 3}| = 7$$

D.
$$|X^{\bullet} - X^{\geq 3}| = 8$$

(f) (2 points) Let $X = \mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$. Define an equivalence relation R on X by:

$$xRy$$
 if $x - y$ is divisible by 3.

Then the partition \mathcal{P}_R associated to the relation R is:

(A)
$$\mathcal{P}_R = \{\{0,3,6,\ldots\},\{1,4,7,\ldots\},\{2,5,8,\ldots\}\}$$

B.
$$\mathcal{P}_R = \{\{0, 2, 4, \dots\}, \{1, 3, 5, \dots\}\}$$

C.
$$\mathcal{P}_R = \{\{0\}, \{1\}, \{2\}, \dots\}$$

D.
$$\mathcal{P}_R = \{(0,0), (0,3), (3,0), \dots, (3,3), (3,6), (6,3), \dots, (1,1), (1,4), (4,1), \dots, (4,4), (4,7), (7,4), \dots, (4,4), (4,7), \dots, (4,4), \dots, (4,4), (4,7), \dots, (4,4), \dots, ($$

$$(2,2),(2,5),(5,2),\ldots,(5,5),(5,8)(8,5)\ldots$$

2. (6 points) Prove by induction that

$$\sum_{i=1}^{n} (2i - n) = n$$

for any integer $n \geq 1$.

Hint: Use

$$\sum_{i=1}^{n+1} (2i - (n+1)) = \left(\sum_{i=1}^{n+1} (2i - n)\right) - (n+1).$$

Base Case: n=1

Inductore step: Assume statement true for n, prove statement is true for n+1.

$$\sum_{i=1}^{N+1} (2i - (N+1)) = (\sum_{i=1}^{N+1} (2i - n)) - (n+1)$$

$$= (\sum_{i=1}^{N} (2i - n)) + (2(n+1) - n) - (n+1)$$

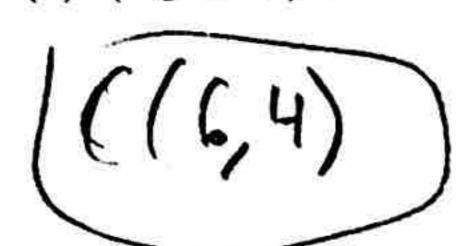
$$= X + (2(n+1) - n) - (x+1)$$

$$= 2n + 2 - n - 1$$

$$= n+1 //$$

Thusi, \(\frac{2}{i=1}\) (2i-n) = n by mathematical induction.

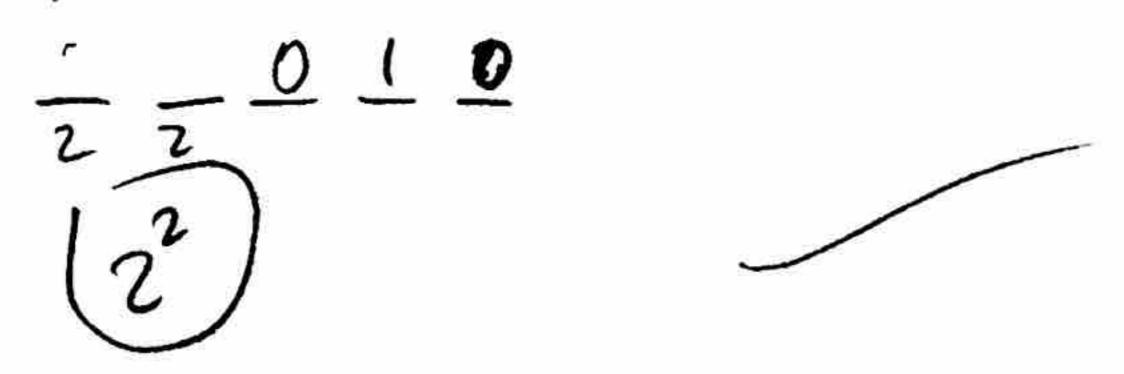
- 3. In the following questions, simply write down your answer. There is no justification needed. Do not simplify expressions as 2^4 , 6!, C(n, r),
 - (a) (2 points) Let $X = \{1, 2, 3, 4, 5, 6\}$. Determine the number of elements of the following set



 ${S \mid S \text{ is a subset of } X \text{ and } |S| = 4}.$

(b) (2 points) Determine the number of 5-bit strings starting in 101.

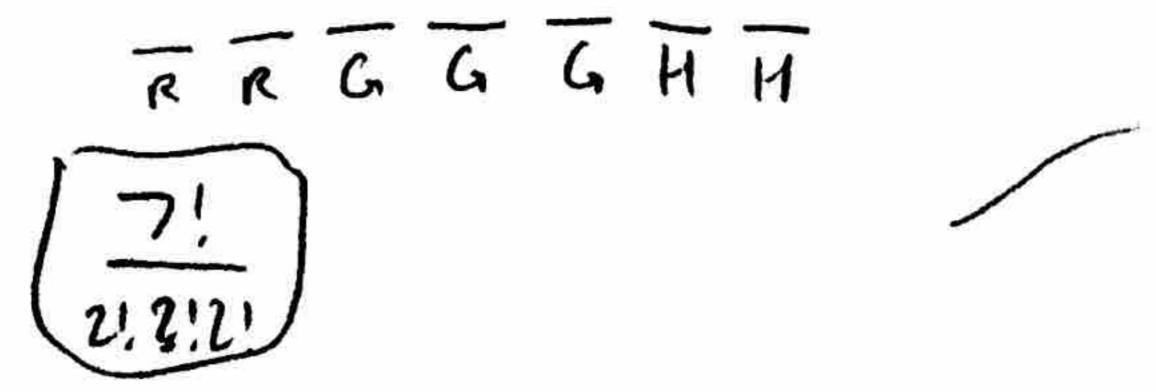
(c) (2 points) Determine the number of 5-bit strings ending in 010.



(d) (2 points) Determine the number of 5-bit strings starting in 101 or ending in 010.

(e) (2 points) You have three friends: Rocco, Gina and Hans. And you have seven different sweets: a popsicle, a piece of apple pie, a chocolate bar, a Berliner, a jelly doughnut, a marshmallow and a lemon drop.

You want to give two sweets to Rocco, three to Gina and two to Hans. In how many ways could you do this?



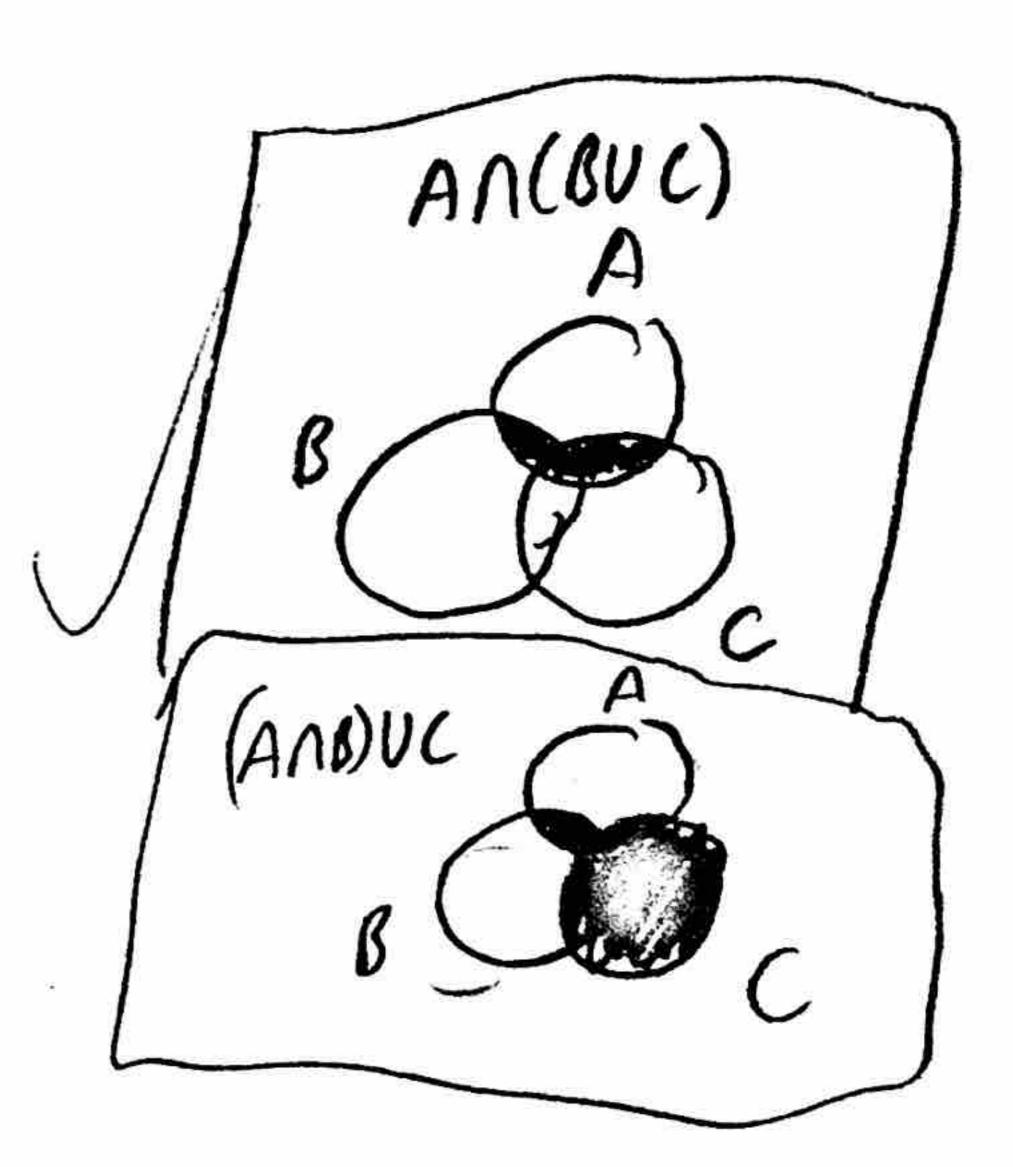
- 4. Answer the following questions, justifying your answers. (If an answer is Yes, explain why. If an answer is No, give a counterexample.)
 - (a) (2 points) Let $X = \{a, b, c, ..., z\}$ be the alphabet. Let α and β be strings over X. Is

No, let
$$\alpha = \alpha, \beta = b$$

 $(\alpha \beta = \alpha b) \neq (\beta \alpha = b \alpha)$

(b) (2 points) Let A, B, C be sets. Then

 $A \cap (B \cup C) = (A \cap B) \cup C$.



(c) (2 points) Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$. Is there a bijective function $f: X \to Y$?

let F: X-> Y be represented by the following army diagram Each XEX maps to a distinct yex such that if for) = for) => x=y. The function is injective. Each yex maps to an xex such that for any Y6Y thre exists an f(x)=y. The function is surjective.

(d) (2 points) Define $f: \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$. Is f surjective?

Yes, for all yeY there exists an X6X such that f(x)=y. Let $y=x^2$, $X=\pm Jy$ $f(Jy)=(Jy)^2=y$ $f(-Jy)=(-Jy)^2=y$