Midterm 2 Version B

Instructor: Jens Eberhardt
Date: 26 February 2017

e This exam has 4 questions, for a total of 34 points.

e Please print your working and answers neatly.

e You may write on the reverse of a page or on the blank pages found at the back of the booklet however

Indicate your final answer clearly.

these will not be graded unless very clearly indicated.
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Please note! The following two pages will not be graded. You must indicate your answers here for them to
be graded!
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1. Each of the fol%ow'mg questions has exactly one correct answer. Choose from the four options presented
in each case. No partial points will be given.

(2) (2 points) The coefficient of a'°b? in the expansion of

k=20 V\—\é:ZO =20 =0
(a+b)%® e
equals
A C(30+Y-1,10-1) C (®0,20)
(@Dc(30,10)
C. C(20,10)

D. C(30 £20-1,20—1)

(b) (2 points) Let ap =a@n-1+ 97 and ag = 1. Then ajp equals

A, 219041 o
101__1 av\; av',|'('2
C~210L 41 = b F %
D. 2100 _1 (an'1+1 \) L
= Oy x L 47"
\0D
Q &3 ﬁqﬁ —(an'242p_z>+zﬂ-|+ 2“
G k:n
= q"-?;“ 20—1+ 2v;—l"’,z,q
" LY . n
co‘""dé,?—' f"‘n-k*é‘_\z :“o"ér
n-tx«\ . L
O f"(l-l) [ '\'k«bl ‘,_—.
(c) (2 points) Which of the following is a linear homogeneous recurrence relation? T |4 K’Lh Y \
an = 50n Y& NAn—3 7 =
X =3(an-1+00-3)+50n-2 = IR ¥ $Annt Sqnz o\
C. an =an-1+3a0 = =)
D. 0m=%-1
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(d “3 {,\2111*5 L‘et G = K, m be the complete bipartite graph on n and m vertices. Then G has an
Euler cycle if and only if

A. n and Xare odd

B. n+miseven

C.n+m Xodd

n and m are even

(e) (2 points) Let X,Y be finite sets and f : X — Y a function. Un(ier which conditions can you

ensure that there are n distinct Z3,Z2,---:Zn € X, such that f(z1) = f(z2) =--- = fl=za):
A n| X} Y]
.1 X| > n[Y] | !
@-ex > [¥] 2 )
D. AX;X nlY| L
l Y
F A >| EL P
3 2 2 ,{ ! z
1 I 2
X B
" 2
g
~_

(f) (2 points) Let G = (V, E) be a simple graph and v € V a vertex in G. Let a(v) be the number of

vertices adjacent to v and &(v) the number of edges incident to v. Then
(v) = a(v)
B. 4(v) Ya(v)
C. d(v) 2 a(v)
D. 4(v) < a(v) v

ald=1 SO~
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.) 2 .
2. Consider the following recurrence relation

anp = —Qp-1 + 2an-2
with initial conditions

ag = 0, a = s
Solve the recurrence relation in three steps.

(a) (2 points) Determine the characteristic polynomial and its roots.
A -
4 +4-2A=0 !

=D

(b) (2 points) Determine the general solution.

A

n n
O\‘\‘\ £ \0"’,}

o | (-2Y o

Foas oo WL |

"

(c) (2 points) Determine the solution fulfilling the initial conditions.

ARo=0 Q.’-‘
O ¥asb(-DL= a+k
\ - N* \:3(“7,)' = a-2b
0\:—-\>

i 74
\ = (-L)-2b L‘“ T '3“(’73’“1 :
L2 Tk e &

)
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3. In the i i i i
5 eCif\/foll;\:ru}g questions, simply write down your answer. There is no justification needed. You can
pecily paths in simple graphs by a sequence of vertices.

Consider the following graph G.
4

(a) (2 points) Find a simple cycle in G with four edges containing 1 and 4.

r431\ﬂ i

(b) (2 points) Is G bipartite?
(3,3
N - i L 3 / g

(c) (2 points) Remove as many edges from the graph G as possible, such that the graph stays connected.

How many edges are left in the end? (You are not allowed to remove vertices!)
/

Cew)

(d) (2 points) Let Ky, be the complete graph on n vertices. How many edges does K, have?

1

o \ A K &
ne o\ 2 S é \D ' S
i ! 2%y N Y e S
Wil W ., -\'(V\-\) = \dn-)“'“’\ = (["_q+(“.-;),,>,é
:(K,\,?-\r(r\-—\)'\\—) = \Wp.ytn-\0

Zn_l +(n-\) ed,je_; N R

(\Cn.g* (“"l)'\\ -3

‘//6"\' {\l)f*"‘ ' :\éh,~s-¥\r\—-g
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4. (8 points) Apply the next two iterations of Dijkstra’s algorithm to find the shortest path from a to z
in the following graph. In each step, annotate each vertex z with L(z) and P(z), as shown. Circle the
vertices already visited. Use the provided blank graphs. If you make a mistake, clearly cross it out and

continue using the next blank graph.
4
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This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless
indicated very clearly here and next to the relevant question.




