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Name: Jurtn Woo

1. [10 pts, 2 points each] Mark each of the following statements as either TRUE or FALSE. For
this question you do not need to show any work beyond the final answer.

Be sure to read the questions carefully!

(a) The complete bipartite graph Ks1 2019 has an Euler cycle. F
(b) There is a graph with 9 vertices in which everyhvertexdhas degree 3. [~
{2 [ €.
/2 01 0 3
hio 4 0 3 0
(c) The graph G with adjacency maftrix A=¢1 0 6 0 5] isconnected. T
dglo 3 0 2 0
e\3 0 5 0 8

(d) The graph below is bipartite:

(e) The two graphs below are isomorphic:

a3 1 2

N
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2. [30 pts] Solve the following recursion relations. In each case, your answer should be a formula
for the nt? term of the sequence in terms of n.

Show your work. You may use results proved in class or in the textbook, but make it clear
how you are getting your answers. A correct answer on its own will not be sufficient for full
credit.

(a) [6 pts] Find a general solution to the recursion relation an = 4an, 1 + Bap—2. (That is,
find a formula for a,, in terms of n and some unknown constants, that will work for any
choice of initial conditions.)
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(b) [4 pts] Find the solution to the recurrence relation a, = 4an_1 + Han—z with initial
conditions ag = 5 and a; = 7.
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(c) [10 pts] Find the solution to the recurrence relation by, = b%_,b%_, with initial conditions
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(d) [10 pts] Find the solution to the recurrence relation ¢, = 4¢p_1 + 5o + 16 with initial
conditions ¢g = 0 and ¢; = 2.
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3. [20 pts] Use Dijkstra’s algorithm to find the length of the shortest path (i.e. the path for which
the sum of the labels is as small as possible) between a and z in the weighted graph below.
You do not need to find the shortest path, finding it’s length will be sufficient.
b

2) c
1 7
a 2 4 N 4 d
4 4
4 e

Show each step of Dijkstra’s algorithm. A correct final answer with no work shown will not be -

sufficient for full credit. Use the blank graphs below for your answer. If you make a mistake,

clearly cross it out and continue using the next blank graph. There are additional blank
" graphs on the back of this page.

i 2 o I 2 3
1 7 1 7
0 o0 0 g
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° Check this box if you used any
A-ns W er '—g}——— graphs from the back of the page:
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4. [25 pts] In each of the following graphs, either find a Hamiltonian cycle (i.e. a cycle which uses
every vertex exactly once), or prove that the graph does not have a Hamiltonian cycle.

If the graph does have a Hamiltonian cycle, CLEARLY drawing this cycle on the provided
graph (so that there’s no ambiguity as to which edges are used, and in which order), or
listing out the vertices in the order traveled (ie. writing something like (a,b,e,d,c,a)) will
be sufficient for full credit.

If the graph does not have a Hamiltonian cycle, you must give an explanation as to why.
Simply drawing diagrams with no ezplanation will NOT be sufficient for full credit.

(a) [10 pts]
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(b) [15 pts]
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5. [15 pts]
(a) [10 pts] Let G be a simple graph with 10 vertices, in which every vertex has degree at
least 5. Prove that G is connected. [Hint: You may want to use the pigeonhole principle.]
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(b) [5 pts] Draw a simple graph with 10 vertices which is not connected, in which every
vertex has degree 4. ’









