Midterm 1 Solutions

Math 61, Lecture 2

Fall 2019

- 1. True/False
	- (a) T The sets $\{3, 4, \{1, 2\}\}\$ and $\{\{2, 1, 1\}, 3, 4, 3\}$ are equal.

Solution: These two sets have the same elements (notably, $\{1,2\} = \{2,1,1\}$).

(b) \mathbf{T} There exists a surjective (i.e. onto) function:

 $f : \mathcal{P}(\{1, 2, 3, 4\}) \to \{A, B, C, D, E\} \times \{X, Y, Z\}$

where $\mathcal{P}({1, 2, 3, 4})$ is the power set of ${1, 2, 3, 4}$.

Solution: $|\mathcal{P}(\{1, 2, 3, 4\})| = 16 \ge 15 = |\{A, B, C, D, E\} \times \{X, Y, Z\}|$, so there is some surjection $\mathcal{P}(\{1, 2, 3, 4\}) \to \{A, B, C, D, E\} \times \{X, Y, Z\}$. For example, we could enumerate the elements of $\mathcal{P}(\{1, 2, 3, 4\})$ as S_1, \ldots, S_{16} and enumerate the elements of $\{A, B, C, D, E\} \times \{X, Y, Z\}$ as Y_1, \ldots, Y_{15} , then define f by

$$
f(S_i) = \begin{cases} Y_i & : i \le 15 \\ Y_{15} & : i = 16 \end{cases}
$$

(c) T If $X = \{1, 2, 3, 4, 5, 6\}$ then any injective (i.e. one-to-one) function $f: X \to X$ must also be surjective (i.e. onto).

Solution: Let R be the range of f. If f is not surjective, then $|R| < |X|$, so $f: X \to R$ is not injective.

Contrapositively, if f is injective, then f is surjective.

(d) \mathbf{F} The relation R on Z defined by xRy if $x \neq y$ is antisymmetric.

Solution: 3*R*4 and 4*R*3 but $3 \neq 4$.

(e) **F** For any positive integers n and r with $r+1 \leq n$, $C(n,r) < C(n,r+1)$ (i.e. if X is an n-element set, there are always more $(r + 1)$ -combinations of X than r-combinations of X).

Solution: $r = 1, n = 2$ is a counterexample since $C(2, 1) = 2 > 1 = C(2, 2)$.

- 2. Compute the following quantities. You may leave your answers in terms of exponents and factorials, but do not leave your final answers in terms of $P(n,r)$ or $C(n,r)$ (so $4^{12} \frac{15!}{3!}$ would be an acceptable final answer, but $P(10, 3)C(18, 7)$ would not).
	- (a) The number of ways to form a 10 card hand from a standard 52 card deck(containing 13 clubs, 13 diamonds, 13 hearts and 13 spades) consisting of exactly 5 clubs, 3 diamonds, 2 hearts and no spades. (The order of the cards in this hand isirrelevant, only the set of 10 cards picked.)

Solution: First, choose 5 clubs: there are $\binom{13}{5}$ ways to do this. Then, choose 3 diamonds: there are $\binom{13}{3}$ ways to do this. Finally, choose 2 hearts: there are $\binom{13}{2}$ ways to do this. Our answer is thus

$$
\binom{13}{5}\binom{13}{3}\binom{13}{2} = \frac{(13!)^3}{2!3!5!8!10!11!} = 28710396.
$$

(b) The number of 6 letter strings that can be formed from the letters A, B, C, D, E (allowing repeats) which contain at least one A and at least one B.

Solution: We'll count the complement; let n be the number of 6-letter strings formed from the letters A, B, C, D, E which do not contain at least one A and at least one B. In other words, n is the number of 6-letter strings formed from the letters A, B, C, D, E which contain no A's or contain no B's (perhaps both). We can count this by inclusion-exclusion. The number of strings which contain no A's is just the number of 6-letter strings formed from the letters B, C, D, E , which is 4^6 . Likewise, the number of strings which contain no B's is 4^6 . The number of strings which contain no A 's and no B 's is just the number of 6-letter strings formed from the letters C, D, E, which is 3^6 . By the inclusion-exclusion principle, $n = 4^6 + 4^6 - 3^6$. The total number of 6-letter strings formed from the letters A, B, C, D, E is 5^6 , so our final answer is

$$
5^6 - (4^6 + 4^6 - 3^6) = 8162.
$$

(c) The number of permutations of the letters BOOKKEEPER (that is, strings of length 10 containing exactly 1 B, 2 O's, 2 K's, 3 E's, 1 P and 1 R) such that the first E occurs before the first O.

Solution: To make such a permutation, first choose how the 1 B, 2 K's, 1 P, and 1 R will be ordered. There are $\frac{5!}{2!}$ ways to do this. Next, choose a way to order the vowels such that the first E occurs before the first O . This means that the first of these five letters to appear must be an E, and the remaining 4 can appear in any order: there are thus $\binom{4}{2}$ ways to order the vowels. Now, we must "merge" our orderings, by deciding where among the E 's and O 's the other letters should go. There are 6 spots for the other letters to go (4 between the vowels and 2 at the ends), and we just need to decide how many consonants get placed in each of these potential spots. In other words, we need to find natural numbers a_1, \ldots, a_6 such that $a_1 + \cdots + a_6 = 5$; the number a_i tells us how many consonants to insert in the *i*th spot. By "stars and bars", there are $\binom{10}{5}$ ways to insert the consonants among the vowels. Our answer is therefore

$$
\frac{5!}{2!} \binom{4}{2} \binom{10}{5} = \frac{4!10!}{(2!)^3 3! 5!} = 90720.
$$

- 3. In each problem below, the relation R is NOT an equivalence relation. In each problem, identify a specific property of equivalence relations which fails (either reflexivity, symmetry or transitivity), and give a specific example to prove that it fails.
	- (a) $X = \mathcal{P}(\{1, 2, 3, 4, 5\}), R$ is the relation on X defined by ARB is $A \subseteq B$ (i.e. A is a subset of B).

Solution: This relation is not symmetric, e.g. $\varnothing R\{1\}$ but $\{1\}R\varnothing$.

(b) R is the relation on R (the set of real numbers) defined by xRy if $|x - y| < 1$.

Solution: This relation is not transitive, e.g. $0R0.5$ and $0.5R1$ but $0R1$.

(c) $X = \{A | A \subseteq \{1, 2, 3, 4, 5, 6\} \text{ and } |A| = 3\}$ is the set of three element subsets of $\{1, 2, 3, 4, 5, 6\}$. R is the relation on X defined by ARB if $A \cap B \neq \emptyset$.

Solution: This relation is not transitive, e.g. $\{1, 2, 3\}R\{1, 2, 4\}$ and $\{1, 2, 4\}R\{4, 5, 6\}$ but $\{1, 2, 3\}$ *R* $\{4, 5, 6\}.$

- 4. Let X, Y and Z be sets, and let $f: X \to Y$ and $g: Y \to Z$ be functions, and let $h = g \circ f$ be the composition of f and g. (That is, h is the function from X to Z defined by $h(x) = g(f(x))$.)
	- (a) Prove that if f and g are both onto, then h is onto as well.

Solution: Let $z \in Z$ be arbitrary. By surjectivity of g, there is some $y \in Y$ such that $g(y) = z$. By surjectivity of f, there is some $x \in X$ such that $f(x) = y$. Now $h(x) = g(f(x)) = g(y) = z$, so z is an element of the range of h. Since z was arbitrary, this shows that h is surjective.

(b) Prove that if f and g are both one-to-one, then h is one-to-one as well.

Solution: Let $a, b \in X$ be arbitrary, and suppose that $h(a) = h(b)$; in other words, $g(f(a)) =$ $g(f(b))$. Since g is injective, $f(a) = f(b)$. Since f is injective, $a = b$. Since a and B were arbitrary, this shows that h is injective.

5. Prove by induction that for any positive integer n ,

$$
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(n-1)^2} + \frac{1}{n^2} \le 2 - \frac{1}{n}.
$$

Solution: We use induction on n .

Base Case When $n = 1$, then left-hand side and right-hand side are both equal to 1, so the inequality is verified.

Inductive Step Suppose that

$$
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(n-1)^2} + \frac{1}{n^2} \le 2 - \frac{1}{n}
$$

for some positive integer n . Then

$$
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}.
$$
 (1)

Since

$$
\frac{1}{n+1} \le \frac{1}{n} = \frac{n+1}{n} - 1,
$$

we see that

$$
\frac{1}{(n+1)^2} \le \frac{1}{n} - \frac{1}{n+1}.
$$

In other words,

$$
-\frac{1}{n} + \frac{1}{(n+1)^2} \le -\frac{1}{n+1},
$$

$$
2 - \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1}.
$$

so

Using
$$
(1)
$$
, we have transitively that

$$
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1},
$$

as desired.