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1. (10 points) Circle the correct answer (only one answer is correct for each
question)

1. If f : X → Y and g : Y → Z are functions and g ◦ f is a bijection,
then:
(a) f must be onto
(b) f must be one-to-one and g must be onto
(c) g must in one-to-one
(d) f and g must both be bijections

2. The relation on the integers defined by xRy if x− y is odd is:
(a) reflexive, but not symmetric or transitive
(b) symmetric, but not transitive or reflexive
(c) symmetric and transitive, but not reflexive
(d) an equivalence relation

3. If f : X → Y is an one-to-one function and g : Y → Z is an onto
function, then g ◦ f is necessarily:
(a) not necessarily one-to-one or onto
(b) one-to-one
(c) a bijection
(d) onto

4. For X a set with n elements, how many relations are there on X that
are both partial orders and equivalence relations?
(a) exactly 1
(b) more than n
(c) more than 1 and less than n
(d) exactly n

5. The function f : {a, b}∗ × {a, b}∗ → {a, b}∗ (X∗ is the set of strings
in X) defined by f((α, β)) = αβ is:
(a) onto but not one-to-one
(b) one-to-one but not onto
(c) neither one-to-one nor onto
(d) onto and one-to-one



2. In this question write down your answer, no need for any justification.
(a) (2 points) List elements of the equivalence relation on {a, b, c, d, e}

determined by the partition {{a, b}, {c}, {d, e}}.

(b) (2 points) Give an example of a relation on X = {a, b, c} that is
reflexive and symmetric but not transitive.

(c) (2 points) Give an example of a functions f : X → Y , g : Y → Z so
that g is onto but g ◦ f is not onto.

(d) (2 points) If X is a set with n elements where n ≥ 1, how many onto
functions are there from X to {0, 1}?

(e) (2 points) What is
∑100

i=0 i? Feel free to write your answer as the
product or sum of a few numbers.



3. (10 points) Recall that the Fibonacci sequence {Fn}∞n=0 is defined by F0 =
0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2. Show that for n ≥ 0,∑n

i=0 Fi = Fn+2 − 1.



4. Let X = Z× Z>0 (i.e. ordered pairs of integers where the second integer
is positive), and define a relation Q on X by (a, b)Q(c, d) if ad = bc.
(a) (8 points) Show that Q is an equivalence relation on X.

(b) (2 points) Give three different elements of [(2, 3)]Q.



5. Let X be a set, and let P = {(A,B) ∈ P(X) × P(X) : A ⊆ B} be the
set of ordered pairs (A,B) of subsets of X where A ⊆ B. Let {0, 1, 2}X

denote the set of functions from X to {0, 1, 2}.
Define a function F : P → {0, 1, 2}X by for (A,B) ∈ P the function
F ((A,B)) : X → {0, 1, 2} is defined by for x ∈ X,

F ((A,B))(x) =


0 x ∈ A
1 x ∈ B and x 6∈ A
2 x 6∈ B

.

(a) (2 points) Let X = {a, b, c, d}. What is F (({a, d}, {a, b, d}))? Re-
member your answer should be a function X → {0, 1, 2}.

(b) (2 points) Again let X = {a, b, c, d}. Find a pair (A,B) of subsets
of X with A ⊆ B so that F ((A,B)) is the function g : X → {0, 1, 2}
defined by g(a) = 1, g(b) = 1, g(c) = 2, g(d) = 2.

Question 5 continues on the next page. . .



Question 5 continued. . .

(c) (6 points) Show that for any set X the function F : P → {0, 1, 2}X

defined on the previous page is a bijection.
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