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1. (10 points) Circle the correct answer (only one answer is correct for each
. question)

1. ¥f:X—Yandg:Y — Z are functions and gofisa bljectlon

then: om v ont
(a) f must be onto ko
(b) f must be one-to-one and g must be onto X (% 3 30 1,01 3%
(¢) g must in one-to-one = 49y
@ f and g must both be bijections :; 2.5% CJSL SQJS)/G'ﬂi
2. The relation on the integers defined by z Ry if x — y is odd is:
(a) reflexive, but not symmetric or transitive ¥ lu oyt

(b) Jsymmetric, but not transitive or reflexive
c¢) symmetric and transitive, but not reflexive
(d) an equivalence relation X

3.If f : X — Y is an one-to-one function and g : ¥ — Z is an onto

function, then g o f is necessarily:

: B0
(a) not necessarily one-to-one or onto Hyog dre-ro ML

(b) one-to-one
(c) a bijection

@ onto

4. For X a set with n elements, how many relations are there on X that

are both partial orders and equivalence relations?
el TUanng,

(a))exactly 1 Symmerse g U}mn&\—nc

(b) more than n 943 RN
(c) more than 1 and less than n - I ANA Led
(d) exactly n i(\,\);(l;l)g

5. The function f : {a,b}* x {a,b}* — {a,b}* (X* is the set of strings
in X) defined by f((e, 8)) = af is:
a)) onto but not one-to-one
(b) one-to-one but not onto
(c) meither one-to-one nor onto
(d) onto and one-to-one



2. In this question write down your answer, no need for any justification.

(a) (2 points) List elements of the equivalence relation on {e,b,c,d, e}
determined by the partition {{a, b}, {c}, {d, e}}-

ﬁ (0!0\)1 (.b/b)t (be.)r(,blok)/ (-CI C) i (d,d\) ;Cdf e); Lefd)/(.efé)g

(b) (2 points) Give an example of a relation on X = {a, b,c} that is
reflexive and symmetric but not transitive. -

£(0,00, b)Y, C0), Lou), R, (0O, CedS

(c) (2 points) Give an example of a functions f: X =Y, g:Y — Z so
that g is onto but g o f is not onto.

[ x=43 fix)=y  weX and g e
Y= §H %% _
2240283 A= el eedeet

(d) (2 points) If X is a set with n elements where n > 1, how many onto
functions are there from X to {0,1}7

f

T~

(e) (2 points) What is Y0047 Feel free to write your answer as the
product or sum of a few numbers.

G243ty (0o = (e o)
2




3. (10 points) Recall that the Fibonacci sequence { Fy, }2, is defined by Fy =

0,Fy =1, and for n > 2, F, = Fp1 + Fra. Show that for n > 0,

Bosty Step: VRS-
FC):OJFI'—"\ f—')Fl;FG.\.—Fi-; O—\—l::\

\Ndu ekve 5Hp>

i |
DUV {nduenve nupornests s S Fi = B! for some n.

\ =a

i+t
We Must piovye hod < E=
1 ',O

iﬁ = F‘nﬂ*\'\' Fn-n
=0

-

f{

My, sinit Fuyg = Frer 4 Eney

Fu\-mﬂ —|

0 Proved 1y yndvthion




4. Let X =7Z X Zg (i.e. ordered pairs of integers where the second integer
is positive), and define a relation @ on X by (a, b)Q({c, d) if ad = be.

(a) (8 points) Show that @ is an equivalence relation on X.

(!,’ﬂ\&/ﬁlﬂj
(£ (0, 0] € X, +yan ~=
Q is refexive. (bY@ (asb)y SN &b = ab, (,2)6 (846

wheve (b (ord) €X
Q05 als0 Symmendc. @ i dekwed on X by (o k) Qlerd)

£ ad=be, 60 1§ (ah) @cd), Gd=he, and e =ad,
¢ (Ld)Blask). Thos, (¢, D) E{6,/b) /s q1s6 1N
e retanvn.

Q 05 Aropsitive. 1§ @Qb), (d), (e, f) € X where

(a3 d) and (¢, d)Qle,f), ¥hen ad=he
:\

and = de, From o\\cso,bvo-ic hanspw aton , fg:%:fe‘}
S0 of =be, 50 (a,b)Q(e/ ), and Qs
rantsinve. ‘

because @ is vefiexivg, SYymmenic, and tuannsve, i i
Oh eguivolenwe ve1AhM pn Y. '

(b) (2 points) Give three different elements of [(2,3)]e- (143) LY 4)
1Y= D%

(2,%), (4, &)/ (G, )




5. Let X be a set, and let P = {(4,B) € P(X) x P(X) : A C B} be the
set of ordered pairs (A, B) of subsets of X where A C B. Let {0,1, 2}
- denote the set of functions from X to {0,1,2}.

Define a function F : P — {0,1,2}% by for (4, B) € P the function
F((A,B)) : X — {0,1,2} is defined by for z € X,

0 z€A
F((A,B))(z)=<1 zeBandz g A.
2 z¢&B

(a) (2 points) Let X = {a,b,c,d}. What is F(({a,d},{a,b,d}))? Re-
member your answer should be a function X — {0,1, 2}.

F(({0,d%, Sahd?) = § o), (b, 1), (C2), (4,0

Fla)=0
FLh) =1
Bl =2
Fld)=0

(b) (2 points) Again let X = {a,b,c,d}. Find a pair (A, B) of subsets
of X with A C B so that F((A, B)) is the function g : X — {0, 1,2}
defined by g(a) = 1,9(b) = 1,9(c) = 2, 9(d) = 2.

1
b= § st

Question 5 continues on the next page. ..



Question 5 continued. ..

(c) (6 points) Show that for any set X the function f: P —={0,1,2}*
defined on the previous-page is a bijection.

F iy oNe-te-0ne pelavye Por every fonchon L
Som K fo G052 6 §0,1,287 vher exie

ok single RARL (A, B) € P suen thod
K
Fa, )W = i? \[ZQ ong % £4-

1 X¥B

¥ {5 6w Decaw e W for evenL  [ynchen
A 26,123 et exBl an  (MAE
(A1%) €D sun et P> $0,1,23"

Decavse ¥ worh ore-ro-one ond ontu
£ is & bijecnon.




This page has been left intentionally blank. You may use it as scratch paper. It will not
be graded unless indicated very clearly here and next to the relevant question.
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