
Math 61 Final Exam
Winter 20

You have until 11:59 pm on Wednesday 3/18/20 to upload a scan of the
exam to gradescope. Please put each problem on a separate page (problems
can take more than 1 page if you like, and subproblems can go on the same
page) and make sure everything is very neat.

You are free to use any resources you like such as the notes, the text, and
the internet. You may not collaborate with other students or solicit or give
help to anyone else. In particular you can’t post exam questions on Q&A
sites.

If you have any questions please email me.
Make sure to justify all your answers!

Question 1 (5 points). Show that 4n =
∑n
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)
.

The binomial theorem tells us that (x + y)n =
∑n
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)
xn−iyi. Setting

x = 1 and y = 3 gives us that 4n =
∑n
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)
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Question 2 (5 points). A team of 53 football players have uniforms that are
numbered 1 through 53. They stand in a line (not necessarily in order of
their numbers). Show that there are 5 players in a row whose numbers sum
to at least 131.

Set the players off in 10 blocks of 5 and 1 block of three based on the
order they are in, so the first 5 players are in one block, the next 5 in
another, and the last 3 in block of three. There are 11 of these blocks. Since∑5

i=1 3i = 1431 and 1431/11 > 130, the average sum of the numbers of the
players in a block is greater than 130, so by the pigeonhole principle some
block has a sum of 131 or more.

It the block that sums to 131 is a block of five we have our five players in
a row, and if it is the block consisting of the last three players then adding
the two players immediately before them gives us our five players.
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Question 3. For the following two statements either prove that they are
correct or give a counterexample.

(1) (2.5 points) If G is a weighted graph where the weights of the edges
are not all unique then there are two vertices in G with more than
1 shortest path between them.

(2) (2.5 points) If G is a weighted graph where the weights of the edges
are all unique then given any two vertices in G there is a unique
shortest path between them.

Neither statement is true. For a counterexample to statment one, take a
tree with 3 vertices and both edges of weight one. For statement two take
the 2-cube with the weight of the bottom edge 2, the right edge 3, left edge
1, and top edge 4. Then there are two shorest length paths from the lower
left hand vertex to the upper right hand vertex.
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Question 4. (1) (5 points) Show that simple graphs G1, G2 are isomor-
phic if and only if their complements1 Ḡ1 and Ḡ2 are isomorphic.

(2) (2 points) Show that a simple graph G with n vertices is r-regular2

if and only if its complement Ḡ is n− r − 1 regular.
(3) (2 points) Show that if a graph G is 1-regular then G has an even

number of vertices.
(4) (4 points) For n an even number determine the number of noniso-

morphic of simple 1-regular graphs with n-vertices.
(5) (2 point) For n an even number determine the number of noniso-

morphic simple n− 2-regular graphs with n-vertices.

(1) First, if G1 being isomorphic to G2 implies that Ḡ1 and Ḡ2 are

isomorphic, then because ¯̄G we have that if Ḡ1 and Ḡ2 are isomorphic
so are ¯̄G1 and ¯̄G2. So, we only need to prove one direction of the
statement.

Suppose that G1 and G2 are isomorphic. So, there is a bijection
f : V1 −→ V2, where Vi is the set of vertices of Gi, with the property
that x, y ∈ V1 are adjacent if and only if f(x) and f(y) are adjacent.

Since each Vi is also the set of vertices of Ḡi, f also gives a bijection
between the vertices of Ḡ1 and the vertices of Ḡ2. Two vertices
x, y ∈ V1 are adjacent in V̄1 if and only if they are not adjacent in
G1, which happens if and only if f(x) and f(y) are not adjacent in
G2, which happens if and only if f(x) and f(y) are adjacent in Ḡ2.

We conclude that f is an isomorphism from Ḡ1 to Ḡ2.
(2) If a simple graph G with n is r-regular, then that means every vertex

of G is adjacent to r vertices among the n − 1 vertices it could be
adjacent to. So, every vertex of Ḡ is adjacent to the other n− 1− r
vertices.

Again, because ¯̄G = G we only need to prove one direction of the
statement.

(3) If the graph is 1-regular then the sum of the degrees of the graph is
equal to the number of vertices in the graph. The sum of the degrees
is an even number, so there must be an even number of vertices.

(4) Up to isomorphism there is only 1 r-regular graph with n-vertices.
First, note that if a graph is 1-regular it is necessarily simple.

Given two 1-regular graphs with n-vertices G1, G2 partition each of
the vertex sets into sets of size two, where the two vertices in each
set are adjacent. Each of these partitions has n/2 blocks, and we get
an isomorphism f : G1 −→ G2 by matching up the blocks in the two
partitions and choosing a bijection between the pairs of vertices in
the corresponding blocks.

1The complement of a simple graph is defined right before exercise 8.6.36 on page 422
of your text.

2r-regular graphs are defined right before exercise 8.6.17 on page 421 of your text.
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(5) Part 1 and part 2 applied to part 3 show that up to isomorphism
there is only 1 simple n− 2 regular graph if n is even.
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Question 5. In this problem you will model an infectious disease.
Here is the model for the disease:
On day zero and all the days before that 0 people have the disease. On

day 1, 1 person has the disease. After 2 days of having the disease everyone
who is infected with the disease infects 2 new people perday. So, if someone
is infected on day 15 they’ll start infecting people on day 17. People that
are infected stay infected forever.

(1) (5 points) Let sn be the number of infected people on the nth day
according to the model. Find a recurrence relation for sn. Give the
recurrence relation and initial conditions necessary to determine the
sequence. Be sure to justify your answer.

(2) (2 points) Solve this recurrence to find a formuala for sn.
(3) (3 points) After more observation the model changes: after 10 days

of being sick infected people recover from the disease and are no
longer affected. On the 11th day of infection you still infect two
more people before recovering. Write a new recurrence relation for
sn that incorporates this information and give the initial conditions
necessary to determine the sequence. Be sure to justify your answer.

(4) (5 points) Does the number of infected people (according to the
model from the 3rd part of this question) keep getting bigger every
day after the second day or does it eventually decline (or perhaps
sometimes increase and sometimes decrease?). You’ll receive full
points for this problem if you solve it with techniques we talked
about in class rather than solving the recurrence relation.

(1) sn = sn−1 + 2sn−2. The sn−1 factor counts all the people who were
sick on the previous day and the 2sn−2 factor counts the people who
are newly sick on the nth day (they were all infected by someone
who was sick on day n − 2). The initital conditions are s0 = 0 and
s1 = 1.

(2) The characteristic polynomial is x2 − x − 2 = (x − 2)(x + 1). So,
the solution is sn = a2n + b(−1)n and we need to determine a and
b. Since s0 = 0 we have that b = −a. So, 1 = s1 = a2− a(−1), and
a = 1/3 and sn = (1/3)2n − (1/3)(−1)n.

(3) If after 10 days people get better we need to subtract the number
of people that got sick on the day n − 10 from sn−1. If we let
tn be the number of people that got sick on day n we have that
sn = sn−1 − tn−10 + 2sn−1, and sn =

∑
i = 09tn−i, so sn − sn−1 =

tn − tn−10. This gives is the equations sn − sn−1 = 2sn−1 − tn−10
and sn − sn−1 = tn − tn−10, so we conclude that tn = 2sn−2.

This gives the recurrence sn = sn−1 − 2sn−12 + 2sn−10.
(4) The sequence is increasing. We show by strong induction that for

j > 2 that i < j implies that si < sj .
The base base is s3 through s15. You could just compute this

directly. Or, you could show that s3 through s12 is increasing since
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you aren’t subtracting anything, and then check s13 through s15 by
noting that you’re never subtracting more than s5 and then noting
that 2s5 = 22 and s7 = 43.

Our inducive hypothesis is that for some k > 15 we have that
for all 2 < j < k that if i < j then si < sj . We consider sk =
sk−1− 2sk−12 + 2sk−2. We want to show that sk − sk−1 > 0. We see
that sk − sk−1 = 2(sk−2− sk−12). But our inductive hypothesis tells
us that sk−2 > sk−12 so this quantity is positive and we’re done by
induction.



7

Question 6 (5 points). In a planar embedding of a connected planar graph
with a cycle every face is bounded by a cycle.

Show that every planar embedding of a connected planar graph with a
cycle has an even number of faces that are bounded by cycles of odd length.

Note: This question is wrong as stated. Instead of “cycle” it
should say “closed path” because the boundary of a face isn’t
necessarily a cycle because there could be repeated edges.

Suppose that G is a connected planar graph. Take the subgraph G′ con-
sisting of all the vertices and edges that are the boundary of a face in G.
Note that G′ has the same faces as G and each face has the same boundary.
Consider the set F of faces of G′ and consider the sum∑

f∈F
# of edges in the boundary of f.

Since each edge in G′ is part of the boundary exactly two faces or it appears
twice in the boundary of one face this sum is twice the number of edges in G′

and is an even number. So, there must be an even number of odd numbers
appearing in this sum, so there is an even number of faces whose boundary
has odd length.

You don’t need to consider this subgraph G′ if you don’t want to. Another
solution would be to make a new graph D by having the vertices of D be
the faces of G with an edge between two vertices for each edge in G that
the faces share in common. Then the result follows from the handshaking
lemma.
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Question 7. You have 6 coins and exactly one coin is lighter or heavier than
the others.

You have access to a balance scale that can determine whether or not
one object is heavier than another one or whether the objects are the same
weight.

(1) (5 points) Describe an algorithm to find the odd coin and determine
whether it is lighter or heavier. Also describe why your algorithm is
correct.

(2) (5 points) Prove that your solution is the best possible, i.e. there
is no algorithm that can solve the problem in fewer weighings than
your algorithm.

(1) Call the coins A,B,C,D,E, F . I’ll describe the decision tree. Start
by weighing AB vs CD.

Suppose first that the left hand side is heavier. Now weigh ACvsBD.
If the left hand side is still heavier the odd coin is A or D and A is
heavy or D is light. If the right hand side is heavier the odd coin
is B or C and B is heavy or C is light. If the odd coins is A or D
weigh A again E. Since E is normal if A is heavier then A is the
odd coin and it’s heavier. If A and E weight the same we conclude
that D is the odd coin and it is light. Similarly, if B is heavy or C is
light we can weight B against E to determine which is which. This
takes a total of three weighings.

If CD is heavier than AB then interchange the symbols A and D
and B and C and run the algorithm in the second paragraph (the
situation is symmetric).

If AB is the same weight as CD the odd coin is E or F . We can
weigh A against E and if necessary A against F to determine the
odd coin and whether it is heavier or light.

(2) Since there are 6 coins there are a total of 12 possibilities. So, any
decision tree must have at leave 12 terminal vertices, so its height
must be greater than log3 12, so height 3 or greater.
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Question 8 (5 points). Let G be a weighted simple graph with one edge
e whose weight is less than the weight of any other edge in G. On your
homework you showed that e is an edge in in every minimal spanning tree
of G.

Show that if there is an edge e′ whose weight is less than that of every
other edge in G other than e, then e′ is also an edge in every minimal
spanning tree of G.

Suppose for a contradiction that G has a MST T that doesn’t include e′.
Adding e′ to T gives a graph with a cycle involving e′. Since the graph is
simple any cycle has lenght 3 or longer, so it involves and edge e′′ that isn’t
e or e′′. Removing this edge e′′ gives a spanning tree of weight less than T
because the weight of e′ is less than that of e′′, which contradicts that T was
a MST.
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Question 9 (5 points). Let X be the set {1, . . . , n}. Construct a bijection
from the set of symmetric and reflexive relations on X to the set of subgraphs
of Kn that have exactly n-vertices.

First, we can label Kn by the elements of X.
Given a subgraph H of Kn with n-vertices define an relation R(H) on X

by (x, y) ∈ R(H) if x and y are adjacent in H, and for all x ∈ X, (x, x) ∈
R(H). The relation R(H) is symmetric since if x and y are adjacent then y
and x are adjacent, and it is symmetric by construction. This gives us a func-
tion R : subgraphs of Kn with n vertices −→ symmetric and reflexive relation on X.

Let’s define the inverse function. Given a reflexive relation S on X
define a subgraph graph G(S) of Kn containg all the vertices of Kn by
for x 6= y ∈ X we have that x and y are adjacent in G(S) if (x, y) ∈
S. This gives a function G : symmetric and reflexive relation on X −→
subgraphs of Kn with n vertices.

We can check that G ◦R = id and R ◦G = id, if we take a graph H then
x, y with x 6= y are adjacent in G ◦R(H) if and only if (x, y) ∈ R(H), which
occurs if and only if x and y are adjacent in H, so H = G ◦ R(H) for any
H a subgraph of Kn with n vertices. Similarly if we take a relation S then
(x, y) ∈ R ◦G(S) if and only if either x = y or if x, y are adjacent in G(S),
which occurs if and only if x 6= y and (x, y) ∈ S. So R ◦ G(S) = S for any
relation S on X and we conlude that G and R are each bijections.
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Question 10. In this question you’ll show that the Catalan numbers satisfy

the recurrence Cn = 2(2n−1)
n+1 Cn−1. This is basically problems 27-32 of section

9.8 of your text.
Set X1 to be the number of nonisomorphic full binary trees with n ter-

minal vertices, and X2 to be the number of nonisomorphic full binary trees
with n + 1 terminal vertices where one of the terminal vertices is marked.

Given a tree T in X1 and a vertex v in T , construct two trees in X2 as
follows:

We either replace v with a vertex v′ and make the left subtree of v′ the
subtree of T rooted at v and we make the right child of v′ a marked terminal
vertex, or we replace v with a vertex v′ and make the right subtree of v′

the subtree of T rooted at v and make the left child of v′ a marked terminal
vertex.

See figures 1 − 3 for any example of this process of making trees in X2

from a tree T in X1 and a vertex in T .

v

Figure
1. The
tree and
the ver-
tex v that
we are
going to
use to
make by
two trees
in X2

v’

m v

Figure
2. Adding
a marked
left child
labeled m

v’

mv

Figure
3. Adding
a marked
right
child
labeled m

Let XT denote the set of all such trees constructed from T (as v ranges
over all the vertices of T ).

(1) (5 points) Construct a bijection from the set of nonisomorphic binary
trees with n−1 vertices where n ≥ 1 to X1 by adding children to all
the vertices of a binary tree with n − 1 vertices that don’t already
have two children. You neeed to show that this is a function with the
claimed domain and codomain and that it is one to one and onto.
Conclude that |X1| = Cn−1 and that |X2| = (n + 1)Cn.

(2) (7 points) Show that |XT | = 2(2n− 1) for every T ∈ X1.
(3) (6 points) Show that {XT : T ∈ X1} is a partition of X2.

(4) (2 points) Show that |X2| = 2(2n−1)|X1| and that Cn = 2(2n−1)
n+1 Cn−1.
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(1) That this is a function is clear enough and it’s also clear than the
resulting graph is a full binary tree, what is not immediately clear
is that the resulting graph is in X1, i.e. that if we do this procedure
to a binary tree with n− 1 vertices we’ll get a full binary tree with
n vertices. But note that every vertex in the old graph becomes an
internal vertex in the new graph, so since the new graph has n − 1
internal vertices it must have n terminal vertices.

To see that this is a bijection contruct the inverse function: given
a full binary tree with n terminal vertices get a binary tree with
n− 1 vertices by deleting all of the terminal vertices. The argument
from the previous paragraph shows that this has the right domain
and codomain and the functions are inverse to each other. Since the
number of binary trees is with n−1 vertices is equal to Cn−1 we have
that |X1| = Cn−1. Since a tree in X2 has n+ 1 terminal vertices and
any one of them could be marked we get that |X2| = (n + 1)Cn.

(2) For this, we just need to show that given a tree in T we get 2 distinct
graphs for each of the 2n − 1 vertices we choose in G and that
there are no overlaps. However, given a graph in XT we can recover
determine which vertex was chosen an whether or not we chose to
add a marked left vertex or a marked right vertex: if we have a graph
T in XT , the parent of the marked vertex is the chosen vertex. If
it’s a left child then we added a marked left vertex, and vice versa
if it’s a right child.

We recover T be deleting the marked vertex and moving the sub-
tree rooted at the sibling of the marked vertex to the spot where the
marked vertex parent is.

(3) For this we need to show that for T1 6= T2 that XT1 ∩XT2 = ∅ and
that ∪T∈X1XT = T2. The first claim follows from the previous item,
it tells us in particular that given a tree in X2 we can determine which
tree in X1 was operated on to give the tree in X2 (Given G ∈ XT

we can recover T by deleting the marked vertex and replacing the
parent of the marked vertex with the subtree rooted at the sibling
of the marked vertex).

The previous item also tells us that second claim, given some
T ∈ X2 we have a procedure to make a tree T ′ so that T ∈ XT ′ . I
repeat myself by saying that we determine T ′ by deleting the marked
vertex in T and moving the subtree rooted at the sibling of the
marked vertex in T to the spot where the marked vertex parent is.

(4) Since the {XT : T ∈ X1} partition X2 then |X2| =
∑

T∈X1
|XT |.

Each of these has size 2(2n−1), so we get that |X2| = 2(2n−1)|X1|,
no the second part about the Catalan numbers follows from part
one.

Another way of phrasing this is to define a function f : X2 −→ X1

by f(G) is the graph obtained by deleting the marked vertex of G
and its parent and placing the parent with the subtree rooted at the
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sibling of the marked vertex. Then f−1(T ) = XT . The function f is
surjective because for any G ∈ XT f(G) = T . So, {f−1(T ) : T ∈ X1}
is a partition of X2 by the last problem on the first midterm.


