Math 61-1 Final exam
I

TOTAL POINTS

79 /90
QUESTION 1 23 2/2
Multiple choice 10 pts Y- 0 pts Correct (24C4)
- 1 pts Close
11 0/2 - 2 pts incorrect
- 0 pts Correct ()
v - 2 pts Incorrect 24 2/2
v - 0 pts Correct
12 2/2 - 1 pts Close (Three of four)
v - 0 pts Correct (a) - 2 pts Incorrect
- 2 pts Incorrect
25 1/2
13 2/2 - 0 pts Correct (2"n"*2 - n) + 2%(n"2 +n / 2) - 2Nn"2 -
v - 0 pts Correct (c) n/2))
- 2 pts Incorrect v -1 pts Close
- 2 pts Incorrect
14 2/2
v - 0 pts Correct (b) QUESTION 3

-2 ptsincorrect Equivalence relation 10 pts

15 2/2 3.1it is an equivalence relation 4/4
v - 0 pts Correct (a) v - 0 pts Correct
- 2 pts Incorrect - 1 pts issue in transitivity

- 3 pts misunderstanding of what relation is saying

QUESTION 2 - 4 pts blank
Short answer 10 pts - 2 pts misunderstanding of symmetry
- 1 pts the decimal thing isn't exactly right, e.g. -.3 is
21272 related to .7
v - 0 pts Correct ((-2)*00 + 3M00) - 0 pts Click here to replace this description.
- 1 pts Almost correct (small arithmetic error in -1 pts issue with symmetry
answer)
- 2 pts Incorrect 3.2 defining a function 4/ 4
v - 0 pts Correct
22 0/2 - 4 pts blank
- 0 pts Correct (C(7,4)6!4!) - 2 pts need to prove uniqueness part of function
- 1pts Close - 2 pts missing existence part of function

v - 2 pts Incorrect - 1 pts issue with uniqueness part of function



- 1 pts need to consider different elements in the
same equivalence class

- 1 pts thing with decimals isn't quite right, for
example -.3 and .7 are related

- 3 pts big misunderstanding of the equivalence

relation or function

3.3 a function that doesn't descend o0/ 2
- 0 pts Correct
v - 2 pts your g is not a function
- 1 pts issue with justification
-1 pts your g does not work
- 2 pts blank

QUESTION 4
m-ary tree 10 pts

41 number of internal vertices 3/5
- 0 pts Correct
- 1 pts No/incorrect answer
- 4 pts No/incorrect justification
- 2 pts Didn't justify number of total vertices
- 3 pts "Proof by example"
- 2 pts Assumed every terminal vertex had the same
height as the tree
- 5 pts Nothing
- 1 pts Forgot to account for root
- 2 pts Didn't subtract off internal vertices

- 2 Point adjustment

@ Correct final answer but there are i internal
vertices; you forgot to count the root vertex
which is not a child, and your two mistakes

cancelled out.

4.2 height4/5
- 0 pts Correct
-1 pts No base case
- 1 pts Didn't set up/invoke induction
- 1 pts Backwards inductive step (didn't show
inductive construction is exhaustive)

- 2 pts Compared to complete tree without showing

this case is extremal

- 3 pts Assumed tree is complete / inductive
construction forms complete trees from complete
trees
v -1 pts Assumed all immediate subtrees have
height h-1

- 4 pts "Proof by example"

- 5 pts Nothing shown / Incorrect reasoning

QUESTION 5
spanning trees 10 pts

5.1unique msts/6
- 0 pts Correct
- 3 pts Appeal to Prim's or Kruskal's Algorithm
(without proving it can generate any MST)
- 6 pts No / Invalid reasoning

- 1 Point adjustment

@ You need to choose e to be the edge of
smallest weight occuring in any cycle in G.

Otherwise very well done!

5.2 non unique spanning tree 4/ 4
v - 0 pts Correct
- 4 pts Not an example
- 4 pts Claimed no such graph exists
- 4 pts Nothing

QUESTION 6
planar graphs 10 pts

612e>3f3/3
v + 3 pts Correct
+ 2 pts >= 3 edges for each face
+ 1 pts >= 3 edges for each face (w/ mistake)
+ 1 pts <=2 faces for each edge

+ 0 pts Incorrect

6.2 e<3v-63/3
v + 3 pts Correct

+ 2 pts Euler's formula



+ 1 pts Correct application with (a)

+ 0 pts Incorrect

6.3 nonplanar graph 4/4
v + 4 pts Correct
+ 3 pts Isomorphic to K_3,3
+ 2 pts Mistaken/missing ismorphism to K_3,3
+1 pts E <= 2v-4 or 2E >=4F
+ 1 pts Other partial credit

+ 0 pts Incorrect

QUESTION 7
10 pts

7.17”n-1divisible by 6 5/5
v + 5 pts Correct
+ 1 pts Base case
+ 1 pts Inductive hypothesis
+ 2 pts factoring out a 7 in inductive step as (6+1) or
adding/substracting 7
+ 1 pts Conclusion

+ 0 pts Incorrect

7.2 number with only 1s divisible by 75/5
v + 5 pts Correct
+ 0 pts Click here to replace this description.
+ 1 pts Look at 8 consecutive terms
+ 1 pts Pigeonhole remainder
+ 1 pts 7 divides a number of the form 111..000...
+ 2 pts This implies that 7 divides 10"*k*11...

+ 1 pts Unsuccessful attempt with substantial work

QUESTION 8
balanced binary trees 10 pts

814/4
v - 0 pts Correct
- 2 pts incomplete, need to describe how a height n
minimal balanced binary tree is made out of ones of
smaller height
- 3 pts can't just do examples
- 4 pts blank

- 1 pts how are you adding in these trees/ vertices?
- 3 pts can't do induction without using some
properties of minimal balanced binary trees

- 4 pts incorrect numbers/ equation

8.2 relationship to fibonacci numbers 3/3

v - 0 pts Correct

- 1.5 pts that is not the recurrence/ equation for the
fibonacci numbers/ minimal balanced binary trees

- 1 pts you are assuming the desired conclusion

- 3 pts blank

- 1.5 pts need to use recurrence for fiboacci
numbers

- 1.5 pts missing inductive step

- 1 pts the two recurrences aren't exactly the same,
you need to account for this difference

- 0.5 pts error in equations

- 1 pts need to check initial conditions

83Theta3/3
v - 0 pts Correct
- 0.5 pts need to account for other term in equation
for fibonacci numbers (sometimes it is contributing
something positive, something something negative)
- 2 pts wrong formula for fibonacci numbers/ v_n
- 1 pts issue with big O
- 1 pts issue with omega
- 3 pts blank/ no gradable work
- 1 pts wrong equations/ issues with constants
- 2 pts need to use equation for v_n/ Fibonacci

numbers

QUESTION 9
binomial coefficients 10 pts

913"n4/a
v + 4 pts Correct
+ 3 pts Minor error
+ 2 pts Binomial theorem
+ 1 pts Attempted induction or counting argument

+ 0 pts Incorret



9.2 vandermonde identity 6/6
v + 6 pts Correct
+ 5 pts Minor errror
+ 3 pts One part of counting argument or (x+y)*n+m
+ 1 pts Attempted to use induction/binomial
thrm/Pascal's identity

+ 0 pts Incorrect
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1. (10 points) Circle the correct answer (only one answer is correct for each
question)

L. kr(n T (L—i—l)’(n——k =1 (“\\ (V\*‘\ (:T
(a) (n+k)!

klnl v ‘ﬁ
lcEs (e -yl

n+1)!
(©) s

@) none of the above

2. The decision tree of a sorting algorithm for@_@}ﬁg n_items (where
at each step we can only decide whether or not one item is less than
other) necessarily has:

{a) a height of > Ig(n!)

(b) a height of Qlg(n!) (but not necessarily a height of > lg(n!))
(c) a height of O(lg(n!))

(d) a height of O(nlgn)

3. If G is a graph with n vertices and n — 2 edges, then:
/Qfﬁ G is a tree |
(b) G is connected |
() G is disconnected
(d) G is simple e

Question 1 continues on the next page. ..



Question 1 continued. ..

4. Which of these graphs has an Euler cycle?
(a) Ky
(® K;
(c) K33
(d) Kaz

5. What is the fewest number of edges (i.e. in the best case) that could
be examined by Dijkstra’s algorithm on a graph withdivertices? (We
examine edges in the part of the algorithm where we update labels.)
You answer should be true for all n. '

C@Less than or equal to n

(b) More than n but less than or equal to n?/2
(c) More than n?/2 but less than or equal to n?
(d) More than n?

..,

This s best ‘Cuig 5
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2. In this question write down your answer, no need for any justification.

Leave your answers in a form involving factorials, P(n,m), (:1), expo-
nents, etc.

(a) (2 points) If s, = 8,1 + 65,2 and sg = 2, 51 = 1, what is 81097

Yt _G=o0 =3 -2 SArAB” + B AR =2

G- =0 Lrrge1 B=
122 22 2
15,93‘—5 + () Khz=gs = A=t

(b) (2 points) How many ways can 7 distinct math majors and 4 distinct
CS majors sit in a circle, if the CS majors won'’t sit by each other
and we say that two seatings are the same if they are related by a

T rotation?

7V e(%,93

|\l_

(c) (2 points) A squirrel has 20 identical acorns that she is going to hide
among 5 distinct holes. In how many ways can the squurel hide the

acorns?
(2.-’-‘ &5 3 \ ‘LL{ T

(d) (2 points) Draw all the distinct (up to isomorphism) rooted trees
with 4 vertices. Please put the root at the top.

LA D

(e) (2 points) What is the number of relations that are symmetric 6t/
reflexive on a set with n-elements?
-elements

(2) » i) -3 9“’ cedien i~
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3. Consider the relation on the real numbers defined by C' = {(z,y) e RxR:
z—y €L} '

(a) (4 points) Show that C is an equivalence relation.

- Far AN X & R\I X~X =0 which s an Sﬂéa{
50 x-x6Z oand ACx. Thes , C 5 retlex e .

- TF Cx9) (:C/ Hhen ()_(vy) €4 oand
—{x-y)‘—’z— , 99 \/—Xé'z- and (yix) &EC.
Thus | to- any LY e, Ly, )&, s

C is symmedic.
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Question 3 continues on the next page. ..



(b). (4 points) Let R denote the set

of equivalence classes of C, ie. R =

{[z] : = € R}. Consider the function f : R — R defined by f(z) =

z+1/2.

Show that the relatation f from R to R defined by f = {([a], [t]) €

R xR : f(a) = b} is a function.

For any X, X & R , b x) =lxg, then

£y "\_wa‘;_'\ and f - ’1"“’%? We Kaow
O R PP S R AL LI Eae A (g LR |
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Yhen Wl Kaow et Dxa-Cixy €2 4o
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e

(c) (2 points) Give an example of a function g : R — R so that the
relation § from R to R defined by § = {([a], []) € R x R : g(a) = b}
is not a function. (Be sure to justify your answer.)

@(x): 3‘(' 151=284 7% wa&n |
U= JED=1E] )
#"% “ ; =% L1 ¢ [5] and
A \ h> a éumof’;a,;_
6 S #




—~ N
o 4

4

\-1—'5”0‘& &

4. For m. a positive integer, a full m-ary tree is a rooted tree where every

parent has exactly m children.

(a) (5 points) If T is a full m-ary tree with 4 internal vertices, how many

terminal vertices does 1" have?
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- (b) (5 points) Show that if T 18 a full m-ary tree of height h with t
terminal vertices, then ¢t < mh
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(a) (6 points) Show that if G is a connected weighted graph where all
the edges of G have distinct weights then G has a unique minimal

spanning tree.
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Question 5 continues on the next page. ..



(b) (4 points) Give an example of a connected weighted graph G so that
all the edges of G have distinct weights and G has at least two distinct
spanning trees that have the same total weight, i.e. the sums of the
weights of the edges in these two distinct trees agree, or prove that
no such weighted graph exists. ’




6.

(a) (3 points) Show that for G a connected simple planar graph contain-
ing a cycle if G has E edges and F' faces, then 2F > 3F.

e Cotcn Q—A c S a bov“’\&ary 4»0 Af" MDSIL tnra

"Eabh  fuce  hes sk pemst D boundary edyes

Oomn" V\.AME?L( o&‘ bovm:lﬂf}l QJJSCS .
(—v\LtS % # bgﬁ,hdb‘f;f_b L 2E

#* ponndartes > 3F

F £ # bowrdaries £ 215

Ty:é 2= \

Yo

(b) (3 points) Show that for G a connected simple planar graph contain-
ing a cycle if G has F edges and V vertices, then E < 3V —6.

Flom park (@), ppe2E . Bakes eguehod
i FEN=2 , &5 F=z E-Vs3

Z2(E-VvI2y £2E
2E-By vl &= 2E

\tla & %v—c:}

Question 6 continues on the next page. ..




(c) (4 points) Is the following graph planar? If it is give a planar drawing "
of it. If not, prove that it is not planar.

F= 9-6*+2 = 5
oEVU\/I L}ICIC ;/\ 'H'UI? f:aF") Y\us le‘,\ {1\ a{. ,£“3F
4 6o s {mgo!,'t_ﬁ,' Yot we Should heve

1
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7. (a) (5 points) Show that for all n > 1, 7* — 1 is divisible by 6.

Bausl (¥l % n=\ 7l‘l:—é which s ciﬁ«((},
&;_\A‘}{HC b\/ G, ° 2 Lase S holds.

Todnedice Skoe Assune T\ 5 divisible by
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(b) (5 points) Show that there is a number of the form Y 10° (i.e. a
number consisting only of 1s) that is divisible by 7.
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8. A balanced binary tree is a binary tree where for each vertex the heights
of the left and right subtrees of that vertex differ by & most one. Let
v, denote the minimum number of vertices in a balanced binary tree of

N =
N TR f

r\_/l-/\ﬂ

Y

height n.

(a) (4 points) Show that v, satisfies for n > 2 the recurrence v, = vp,—1+

Up—9-+ svep
n—2 7\ o
1# oL vones # of ks
/\LL N, = e ’f( of rizAF 4(0# rett
henk% 7 N Suly swbdree
- ; ’ an WJ’;&()
S\
; 3 2
hr "

Vo =l e Wy s Vn'-LJ

(b) (3 points) Show that for n > 0, v, = ,% where F;,,1s the k% , » v s
Fibonacci number. Fres =\ L2, 3,5
=0 v, = v, r—s-h 2-1=| v
AN N M S S Rt 4
T base  rases  pold,
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S\ R+ Pyl = Fase <)
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o pathematizal  ducten. b

Question 8 continues on the next page. ..



(c) (3 points) Show that v, = ©(¢"%), where ¢ =

1+/5
ot
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9. (a) (4 points) Show that Y7 2/(%) = 3"

Qfﬂomru\ Yeorem:,
21 (h) - Z (D217 = Y

(b) (6 points) Show that ("™) =37, (3) (")

T2
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This page has been left intentionally blank. You may use it as scratch paper. It will not
be graded unless indicated very clearly here and next to the relevant question.
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