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answer (only one answer is correct for each

1. (10 points) Circle the correct

question)
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hm for sorting n items (where

rting algorit
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9. The decision tree of a 80
decide whether or not one ite

at each step we can only
other) necessarily has:
a))a height of > 1g(n!)
) a height of Qlg(n!) (
(c) a height of O(lg(nt))
W a height of O(nlgn)

but not necessarily & height of > 1g(n!))

3. If G is a graph with n vertices and 7 — 2 edges, then:

(a) G is a tree
(b) Gis connected
(@G is disconnected
 (d) Gissimple

Question 1 continues on the next page. - -




Question 1 continued. . .

4. Which of these graphs has an Euler cycle?

3

(c) Ksz &2

(d) Kz

5. What is the fewest number of edges (ie. in the best case) that could
be examined by Dijkstra’s algorithm on a graph with n vertices? (We
examine edges in the part of the algorithm where we update labels.)

You answer should be true for all n.

@ Less than or equal to
(b) More than 7 but less than or equal to 7’ /2
(c) More than n?/2 but less than or equal to n?

(d) More than n’
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9. In this question write down your answer, hO need for any justification. Qe 2t
Leave your answers in a form involving factorials, P(n, m), (T’;), expo-

nents, etc. ‘

(a) (2 points) If 8, = Sp-1 7+ 6sn—o and so = 2,81 =1, what is _3100‘?
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(b) (2 points) How many waiys can 7 distinct math majors and 4 distinct -
CS. majors sit in 8 circle, if the CS majors won't sit by each other \jf\"
and we say that two seatings are the same _if they are related by & A

> rotation? AP 2 , ;
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(c) (2 points) A squirrel has 20 identical acorns that she is going t0 hide
among b distinct holes. In how many ways can the squirrel hide the

acorns?

(d) (2 points) Draw o]l the distinct (up to ;somorphism) rooted trees

with 4 vertices. Please put the root at the top.

(e) (2 points) What is the number of relations that are symmetric or
roflexive on a set with n-elements? |
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3. Consider the relation on the real numbers defined by C = {(= y) e RxR
g —1y €L} '

(a) (4 points) Show that (1 is an equivalence relation.
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Question 3 continues on the next page. .-




(b) (4 points) Let R denote the set of equivalence classes of C, i.e. R =
{lz] :z € R}. Consider the function f : R — R defined by f (z) =
z+1/2. ' "

Show that the relatation f from R to R defined by F={(lal, [b]) €
RxR:f(a)=>b}isa function. ,
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(c) (2 points) Give an example of a function g R — R s0 that the

relation g from R to R defined by § = {({al, [b]) € R % R : g(a) = b}
" is not a function. (Be sure to justify your answer.
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4. For m.a positive integer, & full m-ary tree is a rooted tree where every
parent has exactly m children.

(a) (B points) I T'is & full m-ary tree with internal vertices, how many
terminal vertices does T have?
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(b) (5 points) Show that if T is a full m-ary tree of height h with ¢
terminal vertices, then t < mh
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5. (a) (6 points) Show that if G is 2 connected weighted graph where all
the edges of G have distinct weights then G has a unique minimal
spanning tree. '
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Question 5 continues on the next page- .-




(b) (4 points) Give an example of a connected weighted graph G so that
all the edges of G have distinct weights and G has at least two distinct
spanning trees that have the same total weight, i.e. the sums of the

weights of the edges in these two distinct trees agree, or prove that

no such weighted graph exists.
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6. (a) (3 points) Show that for G a connected simnple planar graph contain- o
ing a cycle if ( has E edges and F faces, then 2E = 3F. AR
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(b) (3 points) Show that for G a connected simple planar graph contain- '
ing a cycle if G has F edges and V vertices, then B < 3V —6.
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Question 6 continues on the next page. .




(c) (4 points) Isthe following graph planar? 1fitis give a planar drawing
of it. If not, prove that it is not planar. :
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(a) (5 points) Show that foralln > 1,70 —11s divisible by 6
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b) (5 points) Show that there is a number of the form Y i 10t (i.e. &
i=0

number consisting only of 1s) that is divisible by 7.
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8. A balanced binary tree is a binary tree where for each vertex the heights
of the left and right subtrees of that vertex differ by & most one. Let
vy, denote the minimum number of vertices in a balanced binary tree of
height n. - :

(a) (4 points) Show that v, satisfies for n > 2 the recurrence Un = Un—17+

Un—2-1 |
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(c) 3 points) Show that vn = ®(¢”@), where ¢ = 1—+—2[§
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9. ‘(a) (4 points) Show that S 21(F) = 3™
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