MIDTERM 1 (MATH 61, SPRING 2017)

Your Name: o 2

UCLA id:

Math 61 Section: L 30

Date: 4’/3‘6/\1

The rules:

You MUST simplify completely and BOX all answers with an INK PEN.

You are allowed to use only this paper and pen/pencil. No calculators.

No books, no notebooks, no web access. You MUST write your name and UCLA id.
Except for the last problem, you MUST write out your logical reasoning and/or
proof in full. You have exactly 50 minutes.

‘Warning: those caught violating the rules get automatic 10% score deduction.

Points:
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Total: @ v (out of 100)




MIDTERM 1 (MATH 61, SPRING 2017)

Problem 1. ‘(20 points)

Compute the probability that 4-subset A of {1,2,...,10} satisfies:
a) A has no odd numbers,

b) A has at least one number %

c¢) A contains 1 but not 7. (4

d) the smallest numberin-.i
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Problem 2. (20 points)

Let X = N = {0,1,2,...} be the set of all non-negative inftegers. For each of the following

functions f : X — X decide whether they aré injective, surjective, bijective:
a) fle)=z+1

b flo)=a?-1
c) flz)=2x
d) f(z) = (2*+2z)/(z +2)
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Problem 3. (15 points)

Let a,, = 1111---1 (n ones). Suppose a is divisible by 97. Use induction to show
that ag., = 0 mod 97, for all n > 1. o SR
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Problem 4. (15 points)

Find closed formulas for the following sequences :
a) 4,4,6,8,12,18,28,4270,112,...

i 4
) a=Pomiman(3)  0y2a,(d)
c) =1, ag=1, Gpy1=@n-1 —an forn>2.

Note: you can express a,, in terms of Fibonacci numbers F,,.
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Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

4 3
T @ (1) The number of functions from {A, B, C, D} to {1,2,3} is equal to 4. b “: 1

& @ (2) The sequence 1,3/2,5/3,7/6,9/8, ... is increasing. bibs L bt ! . ” 2 ,'k

@ /F (3) The sequence -1,-2,-3,-4,...1is non-increasing. : i o S
/ A & o g
T (E/ (4) There are 4 anagrams of the word MAMA. i ) - % : %/ e A
——@——E’—@l There are infinitely many Fibonacci numbers which are divisible by 3. : fpin g

@ F (6) The number of permutations of {1,2,3,4,5} is smaller than 123. o s ; B3]

T @ (7) The number of 3-permutations of {1,2, 3,4, 5,6} is equal to (§). ‘ j;

A 7

@ F (8) Thenumber of 3-subsets of {1,2,3, 4} is equal to 4. ( ‘3‘/\\ - f"_7l__‘
1 {

@ F (9) The number of permutations of {1,2,...,n} which have n preceding n — 1 5
(not necessarily immediately) is equal to n!/2

T (10) For every A,B C {1,2,...,12} we have |]ANB| < |[AU B|. ﬁ:ﬁ

*p) ¥ (11) For all n > 1, we have
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T) F (12) The number of grid walks from (0,0) to (10, 10) going through (3,7) is

&
/i} \ {0
equal to (139)2~ A ( 3) 4 (\_ )
/

T @ (13) The number of grid walks from (0,0) to (10,10) avoiding (10,0) and (0, 10) is
equal to 1 (29). :

B @ (14) The number of anagrams of MISSISSIPPI which begin with M is greater
than the number of anagrams which begin with S.

@ F (15) The following parabolas are drawn in the plane:

y = 22 — n’z — n®, a2

Then the regions of the plane separated by these parabolas can be colored with
two colors in such a way that no two adjacent regions have the same color.
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