MIDTERM 1 (MATH 61, SPRING 2017)

Your Name:	
UCLA id:	
Math 61 Section:	10
Date: 4/26	/17_

The rules:

You MUST simplify completely and BOX all answers with an INK PEN. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught violating the rules get automatic 10% score deduction.

Points: Total: 36 (out of 100)

Problem 1. (20 points)

Compute the probability that 4-subset A of $\{1, 2, ..., 10\}$ satisfies:

- a) A has no odd numbers,
- A has at least one number ≤ 3 ,
- c) A contains 1 but not 7.
- d) the smallest number in A is divisible by 3

$$\binom{10}{4} = \frac{10!}{4!6!} = \frac{10.9.8.7}{4.8.1}$$

3,6,8

a)
$$\frac{\binom{5}{4}}{\binom{10}{4}}$$
 $\frac{\binom{5}{4}}{\binom{10}{4}}$

$$(10)$$
 $-(7)$ (10) $-(7)$ (4) (4)

b)
$$\frac{\binom{10}{4} - \binom{7}{4}}{\binom{10}{4}} = \frac{\binom{10}{4} - \binom{7}{4}}{\binom{10}{4}} = \frac{\binom{10}{4} - \binom{7}{4}}{\binom{10}{4}}$$

c)
$$\frac{\binom{8}{3}}{\binom{10}{4}}$$
 $\binom{\binom{8}{3}}{\binom{10}{4}}$ $\binom{\binom{8}{3}}{\binom{10}{4}}$

d)
$$\frac{\binom{7}{3} + \binom{4}{3}}{\binom{10}{4}}$$
 $\frac{\binom{7}{3} + \binom{4}{3}}{\binom{10}{4}}$ $\frac{\binom{7}{3} + \binom{4}{3}}{\binom{10}{4}}$ $\binom{10}{4}$ $\binom{10}{4}$

Problem 2. (20 points)

Let $X = \mathbb{N} = \{0, 1, 2, \ldots\}$ be the set of all non-negative integers. For each of the following functions $f: X \to X$ decide whether they are injective, surjective, bijective:

- $a) \quad f(x) = x + 1$
- $b) \quad f(x) = x^2 1$
- $c) \quad f(x) = 2x$
- d) $f(x) = (x^2 + 2x)/(x+2)$
- a) injective [injective] 3.

or nuther 170 2
Timether 273

c) injective 070

Tinjective 172 3

by ective $0 \rightarrow 0$ $\frac{\chi^2 + 2\chi}{\chi + 2} = \frac{\chi(\chi + 2)}{\chi + 2} = \chi$

Problem 3. (15 points)

Let $a_n = 1111 \cdots 1$ (n ones). Suppose a_k is divisible by 97. Use induction to show

that $a_{k \cdot n} = 0 \mod 97$, for all $n \ge 1$.

K=3

Base: N=1

akol = ak = Omod 97 /

111,111

IM, 111, 111

Step: Assume ax.n = 0 mod 97

· Prove ax. (m) = 0 mod 97

a6=10 - az + a3

09=1111

a3+3 = a2+

ak(n+1) = ak.n+K

ax-n = 0 mod 97 from inductive assumption

ak.n+k = 10 - ak + ak.n, divisible by 97 divisible by 97

So ax.n+x = 0 mod 97

 $a_3 = 111 \quad x-3 \quad 6+3$ $a_6 = 1111111 \quad n=2 \quad 9$

MIDTERM 1 (MATH 61, SPRING 2017)

4, 4, 6, 8, 12, 18, 28 1, 1, 2, 3, 5, 8, 13 13 +3 +4 +5+7 5

Problem 4. (15 points)

Find closed formulas for the following sequences:

a) 4, 4, 6, 8, 12, 18, 28, 42, 70, 112, ...

b) $a_1 = 1, a_{n+1} = a_n \cdot \binom{n+1}{2}$ $a_1 = 0, \binom{d}{2}$

c) $a_1 = 1$, $a_2 = 1$, $a_{n+1} = a_{n-1} - a_n$ for $n \ge 2$.

Note: you can express a_n in terms of Fibonacci numbers F_n .

F.
$$F_{2}$$
 F_{3} F_{4} F_{5}

1,1,2,3,5,8 4,4,6,8,12,20,32

 $a_{1}=4$
 $a_{3}=6$
 $a_{4}=8$
 $a_{4}=8$

 $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4$ $a_1 = 4(2+1)-2$ $a_2 = 4$ $a_1 = 4(2+1)-2$ $a_1 = 4$ $a_1 = 4$

Difference between $a_{n+1} = a_n \binom{n+1}{2}$ #5 is 2Fn $\frac{(n+1)!}{2!(n-1)!} \frac{(n+1)(n)}{2}$

$$a_{n+1} = a_n \frac{n(n+1)}{2}$$
 $1,1,3$
 $0,4=3.3(4)$
 $1,1,3,18$

1.,1.,2.,3.,5.,8 0.2.2.4.6.10.16 0.3.=0.1-0.2 0.4.=0.2-0.3 0.4.=0.16.10.16 0.1.=0.16.16 0.1.=0.16.16 0.1.=0.16

$$0, 1, 1, 2, 7, 7$$
 $3, 1, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 2, 4, 4$
 $3, 4, 4$
 $3, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$
 $4, 4, 4$

4,A,6,8,12

Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

T (\mathbf{F}) (1) The number of functions from $\{A, B, C, D\}$ to $\{1, 2, 3\}$ is equal to 4^3 . (\mathbf{F}) (2) The sequence $1, 3/2, 5/3, 7/6, 9/8, \ldots$ is increasing.

 \mathbf{T} \mathbf{F} (3) The sequence $-1, -2, -3, -4, \dots$ is non-increasing.

T (F) (4) There are 4 anagrams of the word MAMA.

 $\binom{4}{2} = \frac{4!}{2!n!} = \frac{4!}{2!n!} = \frac{4!}{2!n!} = \frac{6}{4!}$

(T) F (5) There are infinitely many Fibonacci numbers which are divisible by 3.

T F (6) The number of permutations of $\{1, 2, 3, 4, 5\}$ is smaller than 123.

T (7) The number of 3-permutations of $\{1, 2, 3, 4, 5, 6\}$ is equal to $\binom{6}{3}$.

T F (8) The number of 3-subsets of $\{1, 2, 3, 4\}$ is equal to 4. $\binom{4}{3} = \frac{4 \cdot 3}{3}$

(T) F (9) The number of permutations of $\{1, 2, ..., n\}$ which have n preceding n-1 (not necessarily immediately) is equal to n!/2

T (F) (10) For every $A, B \subset \{1, 2, ..., 12\}$ we have $|A \cap B| < |A \cup B|$. A = B

(T) **F** (11) For all $n \ge 1$, we have

 $\binom{2n}{0} + \binom{2n}{2} + \binom{2n}{4} + \dots + \binom{2n}{2n} = 2^{2n-1}.$ $\binom{2n}{0} + \binom{2n}{2} + \binom{2n}{4} + \dots + \binom{2n}{2n} = 2^{2n-1}.$ (12) The number of grid walks from (0,0) to (10,10) going through (3,7) is equal to $\binom{10}{3}^2$.

T (13) The number of grid walks from (0,0) to (10,10) avoiding (10,0) and (0,10) is equal to $\frac{1}{2}\binom{20}{10}$.

T (14) The number of anagrams of MISSISSIPPI which begin with M is greater than the number of anagrams which begin with S.

T (15) The following parabolas are drawn in the plane: $y = x^2 - n^2x - n^3$, n = 1, ..., 12.

Then the regions of the plane separated by these parabolas can be colored with two colors in such a way that no two adjacent regions have the same color.