Final Exam

MATH 61 @ UCLA (Summer 2021)

Assigned: July 28, 2021.

Instructions / Admonishment

1. SHOW ALL WORK.

A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit.

- 2. Duration: 24 hours.
- 3. The following is my own work, without the aid of any other person. Signature:

Problem 1 Truth tables.

Write the truth table of the following propositions:

(i) $(p \wedge q) \lor (\overline{p} \lor q)$ (ii) $(\overline{p \wedge q}) \lor (r \land \overline{p})$

Problem 2 Proofs.

Let A and B be two sets. Let \overline{B} be the complement of B. Prove that the following statements are equivalent.

- (i) $A \subseteq B$
- (ii) $A \cap \overline{B} = \emptyset$
- (iii) $A \cup B = B$

Problem 3 Relations.

Let A = {1,2,3}, B = {x,y}, and C = {a,b,c}. Let define the relation \mathscr{R}_1 from A to B by $\mathscr{R}_1 = {(1,x), (2,x), (2,y), (3,y)}$. Let define the relation \mathscr{R}_2 from B to C by $\mathscr{R}_2 = {(x,a), (x,b), (y,a), (y,c)}$.

- (i) Find the matrix A_1 of the relation \mathscr{R}_1 relative to the orderings 1, 2, 3 and x, y.
- (ii) Find the matrix A_2 of the relation \mathscr{R}_2 relative to the orderings x, y and a, b, c.
- (iii) Find the matrix product A_1A_2 . What is the matrix of the relation $\mathscr{R}_2 \circ \mathscr{R}_1$?

Problem 4 Multi- and bi-nomial Coefficients.

(i) Find the coefficients of x^3yz^4 in the expression of $(2x + y + z)^8$ (ii) Use the Binomial Theorem to prove that $\sum_{k=0}^{n} 2^{n-k} (-1)^k \binom{n}{k} = 1$

Problem 5 A bit strings sequence.

Let C_n be the number of bit strings of length n that contain three consecutive 0's.

- (i) Write a recurrence relation that defines the sequence C_n . (Hint: count the number of this type of strings ending with 1, or with 10, or with 100, or with 000)
- (ii) What are the initial conditions?
- (iii) How many bit strings of length seven contain three consecutive 0's?.

Problem 6 The Lucas sequence.

The Lucas sequence (named after Edouard Lucas, the inventor of the Tower of Hanoi puzzle) is defined by $L_n = L_{n-1} + L_{n-2}$, $n \ge 3$; $L_1 = 1$, $L_2 = 3$.

- (i) Find the values L_3, L_4, L_5 .
- (ii) Show that $L_{n+2} = f_{n+1} + f_{n+3}$, $n \ge 1$ where f_1, f_2, f_3, \cdots is the Fibonacci sequence.

Problem 7 Graph theory.

(i) Explain why none of the graphs in Figure 1(a) and 1(b) has a path from the node (vertex) a to a that passes through each edge exactly one time.

Figure 1: Some sample of graphs

(ii) Decide whether the graph in Figure 2 has an Euler cycle. If the graph has an Euler cycle, exhibit one.

Figure 2: Graph with an Euler cycle or not