Midterm 1 (Version A)

UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt Date: 02 February 2017

- This exam has 4 questions, for a total of 36 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.

these will have so		
Name: Aaron	Berdy	
ID number:		

Discussion section (please circle):

section (preaso	g Chere).	TOTAL	MENEZES, DEAN
Day/TA	HUNT, CHRISTOPHER	HAN, KYUTAE	1E
Tuesday	1A .	1D	1F
Thursday	1B	DOMESTIC STREET, COMPANY OF STRE	

Question	Points	Score	
1	12	12	
2	10	10	
3	6	3	
4	8	8	
Total:	36	33	

Please note! The following two pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	В	С	D
(a)	×			
(b)	×			
(c)			X	
(d)			×	
(e)				×
(f)			X	

- I. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (2 points) Let $X = \{1, 2, 3\}$, then $R = \{(1, 3), (2, 2), (3, 1)\}$ is
 - (A.) bijective

 - C. antisymmetric
 - D. not symmetric

(b) (2 points) Let $X=\mathbb{Z}_{\geq 0}=\{0,1,2,\dots\}$. Define an equivalence relation R on X by:

$$xRy$$
 if $x - y$ is divisible by 3.

Then the partition \mathcal{P}_R associated to the relation R is:

- C. $\mathcal{P}_{\mathcal{R}} = \{\{0\}, \{1\}, \{2\}, \dots\}$
- $\mathbb{D}. \ \mathcal{P}_{\mathbb{R}} = \{(0,0), (0,3), (3,0) \dots, (3,3), (3,6), (6,3), \dots,$ $(1,1), (1,4), (4,1), \ldots, (4,4), (4,7)(7,4), \ldots,$ $(2,2),(2,5),(5,2),\ldots,(5,5),(5,8)(8,5)\ldots$

(c) (2 points) Define a partition $\mathcal P$ on $\{0,1,2,3\}$ by

$$\mathcal{P} = \{\{0\}, \{1,3\}, \{2\}\}.$$

Let $R_{\mathcal{P}}$ be the associated equivalence relation on $\{0,1,2,3\}$. Then

- A. $R_{\mathcal{P}} = \{(0,0), (1,3), (3,1), (2,2)\}$
- B. $R_{\mathcal{P}} = \{\{0\}, \{1,3\}, \{2\}\}$

(d) (2 points) Let $X = \{0, 1, 2, 3\}$. For a set Y denote by $\mathcal{P}(Y) = \{S | S \text{ is a subset of } Y\}$ the power set of X. Then

A.
$$|\mathcal{P}(X \times X)| = 2 \cdot 16$$

B.
$$|\mathcal{P}(X \times X)| = 2^8$$

$$(\widehat{C})|\mathcal{P}(X \times X)| = 2^{16}$$

B.
$$|\mathcal{P}(X \times X)| = 2^8$$

C. $|\mathcal{P}(X \times X)| = 2^{16}$
D. $|\mathcal{P}(X \times X)| = 2 \cdot 8$

(e) (2 points) Let $n \ge 1$ be a positive integer. Then

$$\prod_{i=1}^{n} 2i$$

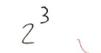
is equal to

A.
$$2^{n} \frac{n(n+1)}{2}$$

B.
$$\frac{2^n 2^{n+1}}{2}$$

C.
$$(2n)!$$

$$\begin{array}{c}
C. (2n)! \\
D. 2^n \cdot n!
\end{array}$$


(f) (2 points) Let $X = \{a, b\}$. Denote by $X^{\geq 3}$ the set of all strings over X of length bigger or equal than three and by X^* the set of all strings over X. Then

A.
$$|X^* - X^{\geq 3}| = 5$$

B.
$$|X^* - X^{\ge 3}| = 6$$

$$D |X^* - X^{\geq 3}| = 8$$

- 2. In the following questions, simply write down your answer. There is no justification needed. Do not simplify expressions as 2^4 , 6!, C(n, r),
 - (a) (2 points) Determine the number of 7-bit strings starting in 1010.

(b) (2 points) Determine the number of 7-bit strings ending in 1010.

(c) (2 points) Determine the number of 7-bit strings starting in 1010 or ending in 1010.

(d) (2 points) You have three friends: Rocco, Gina and Hans. And you have seven different sweets: a popsicle, a piece of apple pie, a chocolate bar, a Berliner, a jelly doughnut, a marshmallow and a lemon drop.

You want to give two sweets to Rocco, three to Gina and two to Hans. In how many ways could you do this?

(e) (2 points) Let $X = \{1, 2, 3, 4, 5\}$. Determine the number of elements of the following set

$${S \mid S \text{ is a subset of } X \text{ and } |S| = 3}.$$

3. (6 points) Prove by induction that

$$\sum_{i=1}^{n} (2i - n) = n$$

for any integer $n \geq 1$. Hint: Use

$$\sum_{i=1}^{n+1} (2i - (n+1)) = \left(\sum_{i=1}^{n+1} (2i - n)\right) - (n+1). \quad (*)$$

Base Case:
$$(n=1)$$

$$\stackrel{!}{\leq} (2i-1) = 2(11-1=1)$$

Induction step:

$$\sum_{i=1}^{n+1} (2i - (n+i)) = \left(\sum_{i=1}^{n+1} (2i-n)\right) - (n+i) = 1$$
by assumption

our statement is true for n=1, and The statement being true for a implied it is also true 11), by induction, the statement is true for all

nEZ.

- Answer the following questions, justifying your answers. (If an answer is Yes, explain why. If an answer
 is No, give a counterexample.)
 - (a) (2 points) Define $f: \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$. Is f surjective?

(b) (2 points) Let X, Y, Z be sets. Then

$$X \cap (Y \cup Z) = (X \cap Y) \cup Z.$$

No. let
$$X = \emptyset$$
, $Y = \{1\}$, $z = \{1\}$
 $X \cap (Y \cup Z) = \emptyset$

$$\times V(\lambda \cap \xi) = \emptyset$$

$$(\times U(\lambda \cap \xi) = \{1\}$$

$$(\times U(\lambda \cap \xi) = \{1\}$$

(c) (2 points) Let $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$. Is there a bijective function $f: X \to Y$?

Yes. for example, let
$$f = \{(1, \alpha), (2, b), (3, c)\}$$

(d) (2 points) Let $X = \{a, b, c, ..., z\}$ be the alphabet. Let α and β be strings over X. Is $\alpha\beta = \beta\alpha$?

The page has been set uncentonally blank. You may use it as account paper. It will not be graded unless understand very tensity here and here to the research question.