Midterm 1 (Version A)

UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt Date: 02 February 2017

- This exam has 4 questions, for a total of 36 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.

Name:	
ID number:	

Discussion section (please circle):

Day/TA	HUNT, CHRISTOPHER	HAN, KYUTAE	MENEZES, DEAN
Tuesday	1A ·	1C	1E
Thursday	1B	1D	(1F)

Question	Points	Score
1	12	10
2	10	10
3	6	6
4	8	8
Total:	36	34

Please note! The following two pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	В	C	D
(a)				D
(b)	A			
(c)			C	
(d)			C	
(e)				0
(f)	Application.		C	

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (2 points) Let $X = \{1, 2, 3\}$, then $R = \{(1, 3), (2, 2), (3, 1)\}$ is
 - A. bijective
 - B. reflexive
 - C. antisymmetric
 - D) not symmetric

3.0

(b) (2 points) Let $X=\mathbb{Z}_{\geq 0}=\{0,1,2,\dots\}$. Define an equivalence relation R on X by:

xRy if x-y is divisible by 3.

Then the partition \mathcal{P}_R associated to the relation R is:

- A $\mathcal{P}_R = \{\{0,3,6,\ldots\},\{1,4,7,\ldots\},\{2,5,8,\ldots\}\}$ B. $\mathcal{P}_R = \{\{0, 2, 4, \dots\}, \{1, 3, 5, \dots\}\}$
 - C. $\mathcal{P}_{\mathcal{R}} = \{\{0\}, \{1\}, \{2\}, \dots\}$
- D. $\mathcal{P}_{R} = \{(0,0), (0,3), (3,0), \dots, (3,3), (3,6), (6,3), \dots, (3,3), \dots, ($ $(1,1), (1,4), (4,1), \ldots, (4,4), (4,7)(7,4), \ldots,$ $(2,2), (2,5), (5,2), \ldots, (5,5), (5,8)(8,5) \ldots$

(c) (2 points) Define a partition P on $\{0, 1, 2, 3\}$ by

$$\mathcal{P} = \{\{0\}, \{1,3\}, \{2\}\}.$$

Let $R_{\mathcal{P}}$ be the associated equivalence relation on $\{0,1,2,3\}$. Then

A.
$$R_P = \{(0,0), (1,3), (3,1), (2,2)\}$$

B.
$$R_{\mathcal{P}} = \{\{0\}, \{1,3\}, \{2\}\}$$

$$(C.)R_{\mathcal{P}} = \{(0,0), (1,1), (2,2), (3,3), (1,3), (3,1)\}$$

D.
$$R_P = \{0, 1, 2, 3\}$$

(0,0) (13) (3) (d) (2 points) Let $X = \{0, 1, 2, 3\}$. For a set Y denote by $\mathcal{P}(Y) = \{S | S \text{ is a subset of } Y\}$ the power set

A.
$$|P(X \times X)| = 2 \cdot 16$$

B. $|P(X \times X)| = 2^{8}$

$$C|\mathcal{P}(X\times X)|=2^{16}$$

D.
$$|\mathcal{P}(X \times X)| = 2 \cdot 8$$

(e) (2 points) Let $n \ge 1$ be a positive integer. Then

is equal to

A.
$$2^{n} \frac{n(n+1)}{2}$$

B.
$$\frac{2^n 2^{n+1}}{2}$$

C.
$$(2n)!$$

$$(D.)2^n \cdot n!$$

$$\prod_{i=1}^{n} 2i$$

(f) (2 points) Let $X = \{a, b\}$. Denote by $X^{\geq 3}$ the set of all strings over X of length bigger or equal than three and by X^* the set of all strings over X. Then

A.
$$|X^* - X^{\ge 3}| = 5$$

B. $|X^* - X^{\ge 3}| = 6$

B.
$$|X^* - X^{\geq 3}| = 6$$

C. $|X^* - X^{\geq 3}| = 7$
D. $|X^* - X^{\geq 3}| = 8$

D.
$$|X^* - X^{\ge 3}| = 8$$

rings over X. Then
$$\{\{a, a, b, a^2, b^2, ab, ba\}$$

- 2. In the following questions, simply write down your answer. There is no justification needed. Do not simplify expressions as 2^4 , 6!, C(n,r),...
 - (a) (2 points) Determine the number of 7-bit strings starting in 1010.

(b) (2 points) Determine the number of 7-bit strings ending in 1010.

(c) (2 points) Determine the number of 7-bit strings starting in 1010 or ending in 1010.

(d) (2 points) You have three friends: Rocco, Gina and Hans. And you have seven different sweets: a popsicle, a piece of apple pie, a chocolate bar, a Berliner, a jelly doughnut, a marshmallow and a lemon drop.

You want to give two sweets to Rocco, three to Gina and two to Hans. In how many ways could you do this?

(e) (2 points) Let $X = \{1, 2, 3, 4, 5\}$. Determine the number of elements of the following set

 $\{S \mid S \text{ is a subset of } X \text{ and } |S| = 3\}$.

2. (6 points) Prove by induction that

$$\sum_{i=1}^{n} (2i - n) = n$$

for any integer $n \ge 1$. Hint: Use

$$\sum_{i=1}^{n+1} (2i - (n+1)) = \left(\sum_{i=1}^{n+1} (2i - n)\right) - (n+1).$$

1) Bosis Step
$$(n=1)$$

$$\sum_{i=1}^{n} (2i-1) = 2(1)-1 = 2-1 = 1$$

Inductive Step: Assume that the statement (+) is true for all $n \ge 1$.

We must show it is also true for n+1. $\sum_{i=1}^{n+1} \left(2i - (n+1) \right) = n + \left(2(n+1) - (n+1) \right)$

LHS=
$$\left(\sum_{i=1}^{n} (2i-n)\right) - (n+1)$$

 $\left(\sum_{i=1}^{n} (2i-n)\right) + 2(n+1) - (n+1)$

- 4. Answer the following questions, *justifying* your answers. (If an answer is Yes, explain why. If an answer is No, give a counterexample.)
 - (a) (2 points) Define $f: \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$. Is f surjective?

Yes Since for all $y \in \mathbb{R}_{\geq 0}$, there is an $x = \mathbb{I}y' \in \mathbb{R}_{>0}$, $f(x) = (\mathbb{I}y)^2 = y$. Hence, f is subjective.

(b) (2 points) Let X, Y, Z be sets. Then

(c) (2 points) Let $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$. Is there a bijective function $f: X \to Y$?

(d) (2 points) Let $X = \{a, b, c, \dots, z\}$ be the alphabet. Let α and β be strings over X. Is