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Midterm 1 (Version A)
UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt
Date: 02 February 2017

e This exam has 4 questions, for a total of 36 points.

e Please print your working and answers neatly.

Write your solutions in the space provided showing working.

e Indicate your final answer clearly.

e You may write on the reverse of a page or on the blank pages found at the back of the booklet however
these will not be graded unless very clearly indicated.

ne—

Discussion section (please circle):

Day/TA | HUNT, CHRISTOPHER | HAN, KYUTAE | MENEZES, DEAN
Tuesday 1A . 1C 1E
Thursday 1B 1D (1F )

Question | Points | Score
1 12 L O
2 10 (2
3 6 'S
4 8 ¥
Total: | 36 | %
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1. Each of the following questions has exactly one correct answer. Choose from the four options presented
in each case. No partial points will be given.

(a) (2 points) Let X = {1,2,3}, then R = {(1,3),(2,2),(3,1)} is

A bijective
B reflexive {

: 7
6’ antisymmetric \\3 D

/ D\ not symmetric 2

(b) (2 points) Let X =Zyp = {0,1,2,...}. Define an equivalence relation R on X by:
. zRy if  — y is divisible by 3. 9- 1 0o oo

L]

Then the partition Pg associated to the relation R is: ,
(&> Pr=1{{0,3,6,-..},{L,47,...},{2,58,...}} g
B. Pz ={{0,2,4...}.{1,3,5,... }}
C. Px={{0}.{1}. {2}, -}
D. Pz = {(0,0),(0,3),(3,0). -, (3,3),(3,6),(6,3),...,
(1,1), (1,4), (4.1),...,(4,4), (4, 7)(7, 4),..
(2,2),(2,5),(5,2),---,(5,5), (5,8)(8.5) .. }

s}

(¢} (2 points) Define a partition P on {0,1,2,3} by
P = {{0},{1,3}.{2}}-

Let B- be the associated equivalence relation on {0,1,2,3}. Then

A Br=1{(0,0),(1.3),(3,1).(2.2)}

B -;={{}{13} e

(Cor> = {(0.0).(1.1), (2.2).(3,3).(1,3), (3. 1)}
D. Ro = {0 1, 2,3}
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(d) (? g:'f)mlt';) Let X = {0,1,2,3}. For a set Y denote by P(Y) = {S|S is a subset of Y} the power set
of X. Then

A [P(X % X)| =210 J oY
IP(X % X)| = 2¢

CP(X » X)| = 2

D. [P(X x X)|=2-8

N
(Y yexibts
C
(e) (2 points) Let n > 1 be a positive integer. Then
n
I]2
i=1
is equal 1o 2.'4, b g
nin+1 /
A. onniitl) !
u2'|+l - = . )
B. 2_-5— ! 5 44 EARS
C. (2n)!
., ) |
' (' T v

(f) (2 points) Let X = {a,b}. Denote by X2% the set of all strings over X of length bigger or equal
than three and by X* the set of all strings over X. Then
A |X*=X2Y =5 £ 10k, 5
B. [X* - X2% =0 . PR L, bo,
@|;X'"A’23|=7 (._
D, |X* - X2 =8

o3
[N W
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2 . - - .
- In the fom questions, simply write down vour answer. There is no justification needed Do not
simplify expressions as 24,6!, Cin,7),..-. —T—

(2) (2 points) Determine the mumber of -bit strings starting in 1010.

1Oot>

—

(c) (2 points) Determine the number of 7-bit strings starting in 1010 or ending in 1010.

1o v 7

N - ]"23+ zj /

(d) (2 points) You have three friends: Rocco, Gina and Hans. And you have seven different sweets: a
popsicle, a piece of apple pie, a chocolate bar, a Berliner, a jelly doughnut, a marshmallow and a

lemon drop.
You want to give two sweets to Rocco, three to Gina and two to Hans. In how many ways could

you do this? —”
!

GLEta 2

(e) (2 points) Let X = {1,2,3,4,5}. Determine the number of elements of the following set

{S|S is a subset of X and [S[i=3}.  SuCren o lemts 3

[ (53)]
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4. Answer the following questions, Justifying your answers. (If an answer is Yes, explain why. If an answer
is No, give a counterexample.)

(a) (2 points) Define f: R — Ryg,z + 22. Is f surjective?

-
-E SH'ICQ ’{;Jv’ ﬂ” \/elzab ,‘H’\ﬂrﬁ £ e X< YT/‘, G«‘-T/\,

P

{(\\: (W\l N Y U?Mcp, R S\Av]QCTW{.

(b) (2 points) Let X,Y, Z be sets. Then

XnYuz)=(XnY)uz.

X n(Yu?) (xnvjue
[ No) G =T | v

|

(¢) (2 points) Let X = {1,2,3} and Y = {a, b, c}. Is there a bijective function f : X = Y7

[Ves ] Led Jox=2Y  such twet 7 ‘{(m‘){(t-’,'u‘;![f}_\_,}_

T\wtv\,% )1 s \tj(_('ﬁ\l( ond zu'r'Jco'uV(’.. Hemce

f ' 5 t:f't)(.{‘ﬂr-gg_,

(d) (2 points) Let X = {a,b,c,...,z} be the alphabet. Let a and B be strings over X. Is

af = fa?
Lm Lf { v SR o F? " L‘
sk 4 b a

; e e S
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