Midterm 2 Version B

UCLA: Math 61, Winter 2018

Instructor: Jens Eberhardt Date: 26 February 2017

- This exam has 4 questions, for a total of 34 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.

Name:	
ID number:	

Discussion section (please circle):

Day/TA	HUNT, CHRISTOPHER	HAN, KYUTAE	MENEZES, DEAN
Tuesday	1A	1C	1E
Thursday	(1B)	1D	1F

Points	Score	
12	12	
6	6	
8	8	
8	8	
34	34	
	12 6 8	

Please note! The following two pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	В	C	D
(a)		1		
(b)		1		
(c)		V		
(d)				1
(e)		✓		
(f)	V			

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given. h = 30
 - (a) (2 points) The coefficient of $a^{10}b^{20}$ in the expansion of

$$C(30,20) = C(30,10)$$

equals A. C(30+10-1,10-1)(B,C(30,10))

C.
$$C(20, 10)$$

D. $C(30 + 20 - 1, 20 - 1)$

(b) (2 points) Let $a_n = a_{n-1} + 2^n$ and $a_0 = 1$. Then a_{100} equals

A.
$$2^{100} + 1$$

$$\begin{array}{c}
\text{B. } 2^{101} - 1 \\
\text{C. } 2^{101} + 1
\end{array}$$

C.
$$2^{101} + 1$$

D.
$$2^{100} - 1$$

$$Q_{n} = Q_{n-1} + 2^n = Q_{n-2} + 2^{n-1} + 2^n = Q_{n-3} + 2^{n-2} + 2^{n-1} + 2^n$$

(c) (2 points) Which of the following is a linear homogeneous recurrence relation?

A.
$$a_n = 5a_{n-1} + na_{n-3}$$

(B)
$$a_n = 3(a_{n-1} + a_{n-3}) + 5a_{n-2}$$

C. $a_n = a_{n-1} + 3a_0$
D. $a_n = a_{n-1}^2$

$$C. \ a_n = a_{n-1} + 3a_0$$

$$D. a_n = a_{n-1}^2$$

(d) (2 points) Let $G = K_{n,m}$ be the complete bipartite graph on n and m vertices. Then G has an Euler cycle if and only if

A. n and m are odd

B. n + m is even

C. n+m is odd

 $(\widehat{D})n$ and m are even

(e) (2 points) Let X,Y be finite sets and $f:X\to Y$ a function. Under which conditions can you ensure that there are n distinct $x_1,x_2,\ldots,x_n\in X$, such that $f(x_1)=f(x_2)=\cdots=f(x_n)$.

A.
$$n|X| < |Y|$$

C.
$$n|X| > |Y|$$

D.
$$|X| < n|Y|$$

(f) (2 points) Let G = (V, E) be a simple graph and $v \in V$ a vertex in G. Let a(v) be the number of vertices adjacent to v and $\delta(v)$ the number of edges incident to v. Then

$$(A) \delta(v) = a(v)$$

B.
$$\delta(v) > a(v)$$

C.
$$\delta(v) \ge a(v)$$

D.
$$\delta(v) \leq a(v)$$

The state of the s

2. Consider the following recurrence relation

$$a_n = -a_{n-1} + 2a_{n-2}$$

with initial conditions

$$C_1 = -1$$
 $C_2 = 2$

$$a_0=0, a_1=1.$$

Solve the recurrence relation in three steps.

(a) (2 points) Determine the characteristic polynomial and its roots.

(b) (2 points) Determine the general solution.

$$S_n = b(-2)^n \quad \forall_n = d(i)^n$$

$$V_n = b(-2)^n + d(i)^n$$

(c) (2 points) Determine the solution fulfilling the initial conditions.

$$V_{0} = b(-2)^{o} + d(1)^{o} = b + d = 0$$

$$b = -d$$

$$U_{1} = b(-2) + d = d - 2b = 1$$

$$d + 2d = 1$$

$$3d = 1$$

$$Q_{n} = -\frac{1}{3}(-2)^{n} + \frac{1}{3}$$

$$V_{0} = b(-2)^{o} + d(1)^{o} = b + d = 0$$

$$d = \frac{1}{3}b = \frac{1}{3}$$

$$V_{1} = 1 \text{ for any nicipal solution}$$

3. In the following questions, simply write down your answer. There is no justification needed. You can specify paths in simple graphs by a sequence of vertices.

Consider the following graph G.

(a) (2 points) Find a simple cycle in G with four edges containing 1 and 4.

(b) (2 points) Is G bipartite?

(c) (2 points) Remove as many edges from the graph G as possible, such that the graph stays connected. How many edges are left in the end? (You are not allowed to remove vertices!)

(d) (2 points) Let K_n be the complete graph on n vertices. How many edges does K_n have?

$$n^{2}-2n$$
 $(1,2)$ (41)
 $(2n)$ $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$
 $(2n)$

4. (8 points) Apply the next two iterations of Dijkstra's algorithm to find the shortest path from a to z in the following graph. In each step, annotate each vertex x with L(x) and P(x), as shown. Circle the vertices already visited. Use the provided blank graphs. If you make a mistake, clearly cross it out and continue using the next blank graph.

