Name: Jay Mishra

UCLA ID Number: 704-925-466

Section letter: 16 (Chris Hunt Tuesday)

Math 61 : Discrete Structures
Midterm 1
Instructor: Ciprian Manolescu

You have 50 minutes.

No notes, books or calculators are allowed. Do not use your own scratch paper.

In how many ways can we distribute 12 (identical) copies of the same book to 5 people: Alice, Bob, Casey, David and Emily?
(A) 12^5 ; (B) 5^{12} ; (C) $C(12,5)$; (D) $C(16,4)$; (E) $C(16,11)$.
In how many ways can we distribute 12 distinct books to 5 people: Alice, Bob, Casey, David and Emily?
(A) 12^5 ; (B) 5^{12} ; (C) $C(12,5)$; (D) $C(16,4)$; (E) $C(16,11)$.
*
Let $X = \{1, 2, 3,\}$ be the set of all natural numbers. If $f, g: X \to X$ are two functions uch that $f \circ g$ is bijective, then:
(A) f has to be bijective, but g does not have to be bijective;
(B) g has to be bijective, but f does not have to be bijective;
(C) Both f and g have to be bijective;
(D) Neither f nor g have to be bijective.
If X is finite (if isn't), both are hisective
soon are bijective
1 2 3:11
1 2 3 24.11
La La L
1 2) (4

1. (2 points each) Multiple choice: Circle the right answer. You do NOT need to

(D) 5; (E) It depends on the string.

×

If α is a string of length two, what is the number of substrings of α ?

justify your answers.

- 2. Write down the answer to each question. You do NOT need to justify your answers. Also, you do not need to simplify expressions such as 2^6 , 6!, C(6,3), etc.
 - (a) Consider the set $X = \{1, 2, ..., 7\}$.
 - (2 points) How many of the relations on X are NOT reflexive?

(2 points) How many of the relations on X are symmetric?

(2 points) How many of the relations on X are symmetric OR reflexive (i.e. either symmetric, or reflexive, or both)?

$$(z^{49}-2^{42})+2^{28}-2^{7}\times z^{28}+z^{42}-(z^{7})$$

(2 points) How many of the relations on X are symmetric but NOT reflexive?

(2 points) How many of the relations on X are both symmetric AND antisymmetric?

(b) (2 points) How many distinct strings can be obtained from the string AAAABCCDD by permuting (re-ordering) its letters?

3. Let $\mathbb Z$ be the set of all integers, and $\mathcal P(\mathbb Z)$ the power set of $\mathbb Z$ (consisting of all subsets of \mathbb{Z}). Consider the following relation R on $\mathcal{P}(\mathbb{Z})$:

$$(A,B) \in R \iff A \cap B = \emptyset.$$

Answer the following questions, fully justifying your answers. (If an answer is YES, explain why. If an answer is NO, give a counterexample.)

(a) (2 points) Is R reflexive?

[No], because if
$$A = \{1,2,3\}$$
, $(A,A) \notin \mathbb{R}$ because $A \cap A = A = \{1,2,3\}$ $\neq \emptyset$

(b) (2 points) Is R symmetric?

(c) (3 points) Is R transitive? Nol. If A= {1,2,3}, B= {4,5,6}, and C= 33,7,9} then $(A,B) \in R$ and $(B,C) \in R$ but $(A,C) \notin R$ because $AB = BAC = \emptyset$ but $AAC = \{3\}$ (d) (3 points) Prove that $(A,B) \in R \circ R$ for all A and B.

(A,B) EROR if AAA(AAB) = Ø and)

BA(AAB)= (A MB) has to equal & because that determines

whether A&B are in R, and any get intersected with \$ 15 0, so (A,B) EROR for

4. (10 points) Prove by induction on n that:

$$2^{2n} \le (n+2)!,$$

for any integer $n \geq 1$.

Inductive case:

$$2^{2n+2} \leq (n+3)!$$

$$(2^{2n})(2^2) \leq (n+3)(n+2)!$$

$$(2^{2n})(4) \leq (n+3)(n+2)!$$

we suppose that $(2^{2n}) \leq (n+2)!$, for any integer $n \geq 1$

and 4 \le n+3 is true for any integer n \ge 1 as well,

so therefore $(2^{2n})(4) \leq (n+3)(n+2)!$ for any integer $n \geq 1$ The inductive case is valid.

Do not write on this page.

1	2	out of 8 points
2	4	out of 12 points
3	8	out of 10 points
4	10	out of 10 points
Total	24	out of 40 points