Name:					
UCLA ID Nun_	No.				
Section letter:	10				

You have 50 minutes.

No notes, books or calculators are allowed. Do not use your own scratch paper.

1. (2 points each) Multiple choice: Circle the right answer. You do NOT need to justify your answers.

If α is a string of length two, what is the number of substrings of α ?

(E) It depends on the string.

In how many ways can we distribute 12 (identical) copies of the same book to 5 people: Alice, Bob, Casey, David and Emily?

(A) 125; (B) 512; (C) C(12,5); (D) C(16,4); (E) C(16,11).

A.A(B.B) C.C(D.D) I.E.

Those 4 lass at of 16 moster (C16)4)

In how many ways can we distribute 12 distinct books to 5 people: Alice, Bob, Casey, David and Emily?

(A)
$$12^5$$
; (B) 5^{12} ; (C) $C(12,5)$; (D) $C(16,4)$; (E) $C(16,11)$.

Let $X = \{1, 2, 3, \dots\}$ be the set of all natural numbers. If $f, g: X \to X$ are two functions such that $f \circ g$ is bijective, then:

- (A) f has to be bijective, but g does not have to be bijective;
- (B) g has to be bijective, but f does not have to be bijective;
- (C) Both f and g have to be bijective;
- (D) Neither f nor g have to be bijective.

$$\frac{n^2-n}{2}$$
of spots - etrison!= n^2-n
reflecte = 2^{n^2-n}

- 2. Write down the answer to each question. You do NOT need to justify your answers. Also, you do not need to simplify expressions such as 2^6 , 6!, C(6,3), etc.
 - (a) Consider the set $X = \{1, 2, \dots, 7\}$.

(2 points) How many of the relations on X are symmetric OR reflexive (i.e. either symmetric, or reflexive, or both)?

(2 points) How many of the relations on X are symmetric but NOT reflexive?

Symmetry and reflexe= 2^{28}

(2 points) How many of the relations on X are both symmetric AND antisymmetric?

(b) (2 points) How many distinct strings can be obtained from the string AAAABCCDD by permuting (re-ordering) its letters?

3. Let \mathbb{Z} be the set of all integers, and $\mathcal{P}(\mathbb{Z})$ the power set of \mathbb{Z} (consisting of all subsets of \mathbb{Z}). Consider the following relation R on $\mathcal{P}(\mathbb{Z})$:

 $(A,B)\in R\iff A\cap B=\emptyset.$ A and B have no elements in common

Answer the following questions, fully justifying your answers. (If an answer is YES, explain why. If an answer is NO, give a counterexample.)

(a) (2 points) Is R reflexive?

Constanto: A= {[]

(A, A) €R smu {13 ∩ {13={15}≠ Ø

(b) (2 points) Is R symmetric?

Intersection is commutative. An B 15 the same thing as Bn A. Both will contain the elements that they loth contain. Therefore, if CADER, CBDADER as well,

(c) (3 points) Is R transitive?

(Gustorecumrle: A= {1}, B={2}, C={1,3} · (A,B) &R sine {1} n {2} = \$

· (B, C) ER SING {2} n {1,3} = 16

(d) (3 points) Prove that $(A, B) \in R \circ R$ for all A and B.

Say (A,B) ER. That means A n B = Ø (A and B have no. elements in commondo So nows ROR will test if (ADB) (ADB) is ER. Since ANB # Ø, and Øn X, her X is any possible set, = Ø, the ROR will alway = Ø, which pores (A, B) EROR For all A and B.

4. (10 points) Prove by induction on n that:

$$2^{2n} \le (n+2)!,$$

for any integer $n \ge 1$.

Use Mathematical Induction

Base Case n=1 $2^{2(n)} \le (1+2)!$ $2^2 \le 3!$ $4 \le 6 \implies \text{true. Base Case is time.}$

S(n): Assume 22n & (n+2)! For nz1

S(n+1): Then $2^{2(n+1)} \leq (n+1+2)!$ we want $\longrightarrow 2^{2n+2} \leq (n+3)!$ Note: (n+3)! = (n+3)(n+2)!to prove $2^{2n+2} \leq (n+3)(n+2)!$

· If we multiply both sides of the assumption by (n+3), we get $(n+3)2^{2n} \le (n+3)!$

Therefore of suffices to show:

 $2^{2n+2} \leq (n+3)2^{n}$ $(2^{2n})(2^2) \leq (n+3)2^{n}$ $\frac{4\leq n+3}{-3}$ $\frac{-3}{n\geq 1} \rightarrow \underline{\text{true since } n\geq 1} \text{ God this inequality}$

Therefore, since $2^{2n+2} \leq (n+3)2^{2n} \leq (n+3)!$, that means $2^{2n+2} \leq (n+3)!$, so S(n+1) is true for $n \geq 1$, which proves S(n) is true for any integer $n \geq 1$.

any integer

Do not write on this page.

1/	1	4	out of 8 points
16	2	12	out of 12 points
17	3	7	out of 10 points
17	- 4	10	out of 10 points
	Total	33	out of 40 points