1. (2 points each) Multiple choice: Circle the right answer. You do NOT need to
If α is a string of length two, what is the number of substrings of α ? (A) 2; (B) 3. (C)
(A) 2; (B) 3; (C) 4; (D) 5; (E) It depends on the string.
a b
aa
In how many ways can we distribute 12 distinct books to 5 people: Alice, Bob, Casey, David and Emily?
(A) 12^5 ; (B) 5^{12} ; (C) $C(12,5)$; (D) $C(16,4)$; (E) $C(16,11)$.
Step 1 Give book 1 to 1 of 5 people! 5 ways
step?
In how many ways can we distribute 12 (identical) copies of the same book to 5 people: Alice, Bob, Casey, David and Emily?
(A) 12^5 ; (B) 5^{12} ; (C) $C(12,5)$; (D) $C(16,4)$; (E) $C(16,11)$.
12+5-1, ******
16 c(16,9)
Let $X = \{1, 2, 3, 4\}$. If $f, g: X \to X$ are two functions such that $f \circ g$ is bijective, then:
(A) f has to be bijective, but g does not have to be bijective;
(B) g has to be bijective, but f does not have to be bijective;
C) Both f and g have to be bijective;
D) Neither f nor g have to be bijective.
(,) fr.)
f'. x -> x 2 3 3 3 3 3
5: X - X 3 1 23 1 23 1 24 24

- 2. Write down the answer to each question. You do NOT need to justify your answers. Also, you do not need to simplify expressions such as 2^6 , 6!, C(6,3), etc.
 - (a) Consider the set $X = \{1, 2, ..., 10\}.$

(2 points) How many of the relations on X are NOT reflexive?

(2 points) How many of the relations on X are symmetric?

$$\left(2^{\frac{n^2-n}{2}}\right)$$
 $= 2^{\frac{n^2+n}{2}} = 2^{\frac{n^2+n}{2}} = 2^{\frac{n^2+n}{2}}$

(2 points) How many of the relations on X are symmetric OR reflexive (i.e. either symmetric, or reflexive, or both)?

(2 points) How many of the relations on X are symmetric but NOT reflexive?

(b) (2 points) How many distinct strings can be obtained from the string AAABBCCCD by permuting (re-ordering) its letters?

9!

3. Let $\mathbb Z$ be the set of all integers, and $\mathcal P(\mathbb Z)$ the power set of $\mathbb Z$ (consisting of all subsets $\mathbb Z$). Consider the fellowing of \mathbb{Z}). Consider the following relation R on $\mathcal{P}(\mathbb{Z})$:

 $(A,B) \in R \iff A \cap B \neq \emptyset.$

Answer the following questions, fully justifying your answers. (If an answer is YES, explain why. If an answer is NO, give a counterexample.)

(a) (2 points) Is R reflexive?

no, let A = Ø. Then ANA = Ø, Honce, the drago Satisfy the retation

(b) (2 points) Is R symmetric?

yes, the water of I sets is commutative. A ABic the some as BNA. Therefore, if (AB) ER, then 1B,A)ER as well

(c) (3 points) Is R transitive?

No. Let A = 833 B= 23,53, C= { 5,73, Then ARB (since ANB= {3}), BRC (since DNC= {5}) But ARC (since ANC = Ø)

(d) (3 points) Prove that $(A, B) \in R \circ R$ whenever A and B are nonempty.

ROR = A , where A is the matrix of the relation Then lif A and B are non empty, they will ! for A? what is the matry?

4. (10 points) Prove by induction on n that:

 $3^n \le (n+1)!$

for any integer $n \geq 4$.

base case (n=u)

LHS

RHS

(u+1)! =5!=126

Inductive step

Suppose $3^n \leq (n+1)!$, We want to show that $3^{n+1} \leq ((n+1)+1)!$...

(n+1)+1)! = (n+2)! = (n+2)(n+1)!

using the inductive hypothesis,

3" (k+1) < (n+1)!(n+2).

Therefore, it suffices to show 3 1 43 (n+2)

3 n+1 = 3.3°, which is <3° (n+2) since

n+2 > 3 for n 2 4

.. we have showed that 3" \((n+1)!\) for all n24

[n62]