1. (2 points each) Multiple choice: Circle the right answer. You do NOT need to justify your answers. (B) 3; (C) 4; (D) 5; (E) It depends on the string. In how many ways can we distribute 12 distinct books to 5 people: Alice, Bob, Casey, David and Emily? (A) 12^5 ; (B) 5^{12} ; (C) C(12,5); (D) C(16,4); (E) C(16,11). In how many ways can we distribute 12 (identical) copies of the same book to 5 people: Alice, Bob, Casey, David and Emily? (A) 12^5 ; (B) 5^{12} ; (C) C(12,5); (D) C(16,4); (E) C(16,11). 12+4,4 Let $X = \{1, 2, 3, 4\}$. If $f, g: X \to X$ are two functions such that $f \circ g$ is bijective, then: (A) f has to be bijective, but g does not have to be bijective; (B) q has to be bijective, but f does not have to be bijective; (C) Both f and g have to be bijective; (D) Neither f nor g have to be bijective.

- 2. Write down the answer to each question. You do NOT need to justify your answers. Also, you do not need to simplify expressions such as 2^6 , 6!, C(6,3), etc.
 - (a) Consider the set $X = \{1, 2, ..., 10\}$. n=10

(2 points) How many of the relations on X are NOT reflexive?

(2 points) How many of the relations on X are symmetric?

$$2^{(n+1)/2} = 2^{(o(n)/2} = 2^{55}$$

(2 points) How many of the relations on X are symmetric OR reflexive (i.e. either symmetric, or reflexive, or both)?

$$\frac{2^{n^{2}-n}+2^{n(n+1)/2}-2^{n(n-1)/2}}{2^{90}+2^{55}-2^{45}}\sqrt{2^{n(n-1)/2}}$$

(2 points) How many of the relations on X are symmetric but NOT reflexive?

Sym 2 not set =
$$2^{n(n+1)/2}$$
 Sym and set = $2^{n(n+1)/2}$
Sym 4 not set = $2^{n(n+1)/2} - 2^{n(n+1)/2}$

(2 points) How many of the relations on X are both symmetric AND antisymmetric?

2° = (2'°)

123456789

(b) (2 points) How many distinct strings can be obtained from the string AAABBCCCD by permuting (re-ordering) its letters?

9! 3!2!3! 3. Let \mathbb{Z} be the set of all integers, and $\mathcal{P}(\mathbb{Z})$ the power set of \mathbb{Z} (consisting of all subsets of \mathbb{Z}). Consider the following relation R on $\mathcal{P}(\mathbb{Z})$:

$$(A,B) \in R \iff A \cap B \neq \emptyset.$$

(c) (3 points) Is R transitive?

A : 4 (5 23 3 8 : 22 3 3 5

A / B + O B / C + O C C + A - C - C

So (A , B) ER > (B > C & R > C + C + C) & R

(d) (3 points) Prove that (A, B) \(\in R \) R whenever A and B are nonempty.

Since A : S non empty and P(2)

Consists & all subsets of 2

Therefore is

denoted (which contains all

integers & 2 . Therefore A / C + Q

and (A > C & R & B is also nonempty

So (\(\in B \) + \(\in \) and ((\(\in B \)) & \(\in R \). Therefore

Composing R \(\in R \) gives Ror

A \(\in C \) A \(\in R \) \(\in R \) R \(\in R \) A \(\in R \) B

and (A \(\in R \)) \(\in R \) R \(\in R \) R \(\in R \) R \(\in R \) A \(\in R \) B

and (A \(\in R \)) \(\in R \) R \(\in R \

nonempty A and B.

4. (10 points) Prove by induction on n that:

$$3^n \le (n+1)!$$

for any integer $n \geq 4$.

Case case:
$$n=4 + 3^4 \pm (5)!$$

 $81 \pm 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
 $81 \pm 20 \cdot 6$
 81 ± 120

assume 3" 4(n+1); is true, then

It suffices to show that

3(nt)! 5(n+2)! for n24

3. (n+1) ! (n+2) (n+1)!