

Math 61 : Discrete Structures Midterm 1 Instructor: Ciprian Manolescu

You have 50 minutes.

No notes, books or calculators are allowed. Do not use your own scratch paper.

1. (2 points each) Multiple choice: Circle the right answer. You do NOT need to justify your answers. If α is a string of length two, what is the number of substrings of α ? (A) 2; (B) 3; (C) 4; (D) 5; (E) It depends on the string. In how many ways can we distribute 12 (identical) copies of the same book to 5 people: Alice, Bob, Casey, David and Emily? (A) 12^5 ; (B) 5^{12} ; (C) C(12,5); (D) C(16,4); (E) C(16,11). In how many ways can we distribute 12 distinct books to 5 people: Alice, Bob, Casey, avid and Emily? (C) C(12,5); (D) C(16,4); (E) C(16,11). (A) 12^5 ; (B) 5^{12} ; Let $X = \{1, 2, 3, ...\}$ be the set of all natural numbers. If $f, g: X \to X$ are two functions such that $f \circ g$ is bijective, then: (A) f has to be bijective, but g does not have to be bijective; (B) g has to be bijective, but f does not have to be bijective; (C) Both f and g have to be bijective; (D)Neither f nor g have to be bijective.

- 2. Write down the answer to each question. You do NOT need to justify your answers. Also, you do not need to simplify expressions such as 2^6 , 6!, C(6,3), etc.
 - (a) Consider the set $X = \{1, 2, ..., 7\}$.

(2 points) How many of the relations on X are NOT reflexive?

$$2^{49} - 2^{42} = 2^{42} (2^{7} - 1) = 2^{42} (127)$$

(2 points) How many of the relations on X are symmetric?

any of the relations on
$$X$$
 are symmetric, $2^{\frac{1}{2}}$ choices for $x \in X$ (diagonal)

(2 points) How many of the relations on X are symmetric OR reflexive (i.e. either symmetric, or reflexive, or both)?

| symmetric
$$\nu$$
 reflexive | = | S | + | R | - | S $\cap R$ |

$$2^{28} + (2^{49} - 2^{42}) - 2^{21}$$

$$2^{49} + 2^{28} - 2^{42} - 2^{21}$$

$$2^{28} (2^{21} + 1) - 2^{21} (2^{21} + 1)$$

$$(2^{28} - 2^{21}) = 2^{21} (2^{21} + 1) (2^{7} - 1)$$

(2 points) How many of the relations on X are symmetric but NOT reflexive?

(2 points) How many of the relations on X are both symmetric AND antisymmetric?

All but diagonal must be O, choose from diagonal entires

[27]

(b) (2 points) How many distinct strings can be obtained from the string AAAABCCDD by permuting (re-ordering) its letters?

4! 2! 2!

3. Let $\mathbb Z$ be the set of all integers, and $\mathcal P(\mathbb Z)$ the power set of $\mathbb Z$ (consisting of all subsets of \mathbb{Z}). Consider the following relation R on $\mathcal{P}(\mathbb{Z})$:

$$(A,B) \in R \iff A \cap B = \emptyset.$$

Answer the following questions, fully justifying your answers. (If an answer is YES, explain why. If an answer is NO, give a counterexample.)

(a) (2 points) Is R reflexive?

R reflexive?
NO. Let
$$A = \{1, 2, 3\}$$

 $A \cap A = A = \{1, 2, 3\} \neq \emptyset$, so $(A, A) \notin R$

(b) (2 points) Is R symmetric?

s) Is
$$R$$
 symmetric?
 YeS_1 if $(A,B) \in R \iff A \cap B = \emptyset \iff B \cap A = \emptyset \iff (B,A) \notin R$
 $since \text{ if } \forall a \in A,$
 $a \notin B \text{ and } \forall b \in B, b \notin A,$
then $similarly \forall b \in B, b \notin A$
and $\forall a \in A, a \notin B$

(c) (3 points) Is R transitive?

S) Is R transitive?

NO.
$$A = \{1,2\}$$
 $B = \{3,4\}$ $C = \{1,5\}$ (A,B) $\in R$ since $A \cap B = \emptyset$ (B,C) $\in R$ since $B \cap C = \emptyset$ (A,C) $\notin R$ since $A \cap C = \{1\} \neq \emptyset$

(d) (3 points) Prove that $(A, B) \in R \circ R$ for all A and B.

$$(A,B) \in RoR \iff \exists C.s.t. (A,C) \in R \text{ and } (G,B) \in R$$
 $AnC=\emptyset$ $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$
 $CnB=\emptyset$

4. (10 points) Prove by induction on n that:

$$2^{2n} \le (n+2)!,$$

for any integer $n \geq 1$.

Bose case
$$N=1$$
 $2^{2(1)} \le (1+7)!$
 $4 \le 3! = 6$ true $\sqrt{ }$

Inductive Step assume
$$2^{2n} \leq (n+2)!$$

want $2^{2(n+1)} \leq ((n+1)+2)!$
 $2^{2n+2} \leq (n+3)!$

$$2^{2} \cdot 2^{2n} \leq (n+3)(n+2)$$

by our inductive hypothesis, it suffices to Show that $2^2 \le (n+3)$

1et
$$n \ge 1$$
, $4 \le (1+3) = 4$
 $4 \le (n+3) \quad \forall n \ge 1$

therefore the statement on n+1 is true which implies $2^{2n} \le (n+2)!$ on $n \ge 1$

Do not write on this page.

1	4	out of 8 points
2	10	out of 12 points
3	lo	out of 10 points
4	10	out of 10 points
Total	34	out of 40 points