Math 61, Lec 1 Winter 2016 Quiz 2 Week 3 Name (Print): Frank Fu

Name (Sign): Zulu Z

Discussion Section: 10

Let X be a set. We define the power set $\mathcal{P}(X)$ to be the set of all subsets of X. For example, if $X = \{1, 2\}$, then $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Consider the set $Y = \{1, 2, 3\}$. Define a function $f : \mathcal{P}(Y) \to \mathbb{Z}$ by $f(S) = \sum_{x \in S} x$. (For example, $f(\{1, 3\}) = 1 + 3 = 4$.)

Prove that f is not one-to-one. f is one-to-one if for $x_1 \in X$ and $x_2 \in X$ $[f(x_1) = f(x_2)] => x_1 = x_2$

Consider $f(\xi 33)$ and $f(\xi 1,23)$. $[\xi 33]$ and $\xi 1,23]$ are both part of Then, $f(\xi 33)=3$ and $f(\xi 1,23)=1+2=3$.

So, f({33}) = f({1123}) = 3.

However, £33 + £1,23 ca contradiction to the definition of 1-to-1)

-. fis not one-to-one.

B