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Time Limit: 50 Minutes Discussion Section: 5

This exam contains 6 pages (including this cover page) and 5 problems. Check to see if any pages
are missing,

You may not use books, notes, or any calculator on this exam.

Unless otherwise stated in the problem, you may leave all answers in terms of ﬁUu P(n, k), k!, or
any sum, difference, product, or quotient of such symbols.

Partial credit will only be awarded to answers for which an explanation and/or work is shown.

Please attempt to organize your work in a reasonably neat and coherent way, in the space provided.
If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem | Points | Score

1 16

2 18

3 7 [

& 20

5 24

Total: 100
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1. (16 points) Solve the recurrence relation A, = 34,1 + 44, o, where Ag =4, A; = 6.




Math 61, Lec 1 Exam 2 - Page 3 of 6 2-22-16

2. (18 points) Prove the combinatorial identity

k
> Cm+k—i—1k—i)-Cln+i—1,i) =C(m+n+k—1k)
=0

using a combinatorial argument. No more than half credit will be awarded to an algebraic
proof. (Hint: Use Pirates and Gold.)
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3. (22 points) Recall that a k-cycle is a cycle that includes k edges. In this problem, you will
prove Ramsey’s theorem, which states that if n > 6 and we color each edge of K, either
blue or red, then there must exist either a set of three blue edges that form a 3-cycle, or
a set of three red edges that form a 3-cycle.

To this end, let n > 6 be arbitrary, and suppose every edge in K, is colored either blue or
red. Let v; be a vertex in K.

Prove that at least three of the edges incident to vy are the same color.
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(a) In the previous part, you proved that at least three of the edges incident to v; are the
same color. Without loss of generality, you may assume that color is blue. Suppose that
{v1,v2}, {v1,v3}, and {v1,v4} are blue edges. Prove that between these four vertices, there
must exist either a blue 3-cycle or a red 3-cycle.
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4. (20 points) Run Dijkstra’s algorithm on the following graph to find the shortest path from a to
z. Recall that at each stage of Dijkstra’s algorithm, one vertex is chosen and given a permanent
label which represents the length of the shortest path from a to that vertex. Write down the
list of vertices in the order in which they are given permanent labels. Additionally, find the
length of a shortest path from a to z.
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5. (24 points) There are 999,999 natural numbers less than one million. We write any of them as
a six digit number, including leading zeros. (For example, 001124 is how we write the number

1124).
(a) How many of these numbers have all different digits?

o & & T k 5 A
choces A B 2 : 0N M |/ =
M c o D ,A\ ; _. G -9

(b) How many of these numbers have/ digits that sum to 187
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(c¢) How many of these numbers have exactly four distinct digits? (For example, 922433 is
valid, but 922435 is not valid and 922444 is not valid).
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