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Math 61, Lec 1 Name (Print):

Winter 2016

Exam 1 Name (Sign): .
1/25/16 (A
Time Limit: 50 Minutes Discussion Section:

This exam contains 6 pages (including this cover page) and 5 problems. Check to see if any pages

are missing.
You may not use books, notes, or any calculator on this exam.

If your answer contains a number that is impossible to simplify without the use of a calculator,
such as €3, In(3) or sin(3), you may leave answers in terms of e, In, or trig functions.

Partial credit will only be awarded to answers for which an explanation and/or work is shown.

'Please attempt to organize your work in a reasonably neat and coherent way, in the space plfovided.
If you need more space, use the back of the pages; clearly indicate when you have done this.
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1. (7 points) Negate the following implication:
“If you are on the wait list, then you will be enrolled in the class.”
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2. (18 points) (a) Let X be a set with n elements. How many different relations on X are there?
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(b) Let X be a set with n elements. How many different relations on X are there that are not
reflexive?
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3. (25 points) Use mathematical induction to prove that 1 +3+5+---+ @2n+1)=(n+ )
every integer n > 0.
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ts of X.
4. (25 points) Let X be a set. We define the power set P(X) to be the set of all subsets
For example, if X = {1,2}, then P(X) ={0,{1},{2},{1,2}}. 177 BT
Define a relation R on P(Z) by (S,T) € R if and only if § C T, for any sets S an
Prove that R is a partial order.
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LR d {4,5,6}.
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