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Instructions:

• There are 8 problems. Make sure you are not missing any problems.

• Explain your answers using complete sentences. Writing a number alone is
not enough to earn full credit.

• No calculators, books, or notes are allowed.

• Do not use your own scratch paper.



1 BLUE EXAM

1. (10 points) Recall that N = {0, 1, 2, 3, . . . } is the set of nonnegative integers.
Define the relation R as follows:

R = {(j, k) ∈ N × N
∣∣ the last digit of j is equal to the last digit of k }.

Is R a partial order? Is R an equivalence relation? Prove your answers.

SOLUTION : We can say already that R is not a partial order because (1, 11) ∈ R
and (11, 1) ∈ R, so R is not antisymmetric.
R is an equivalence relation. To prove this, we need to check that R is reflexive, transi-
tive, and symmetric.
R is reflexive. Proof: Of course (j, j) ∈ R because the last digit of j is equal to the
last digit of j.
R is symmetric. Proof: If (j, k) ∈ R, then the last digit of j is equal to the last digit
of k. Of course this is the same as saying that the last digit of k is equal to the last
digit of j; in other words, (k, j) ∈ R.
R is transitive. Proof: Suppose (j, k) ∈ R and (k, n) ∈ R. Then the last digit of j is
equal to the last digit of k, which is equal to the last digit of n. Hence (j, n) ∈ R.



2. (5 points) Suppose the local diner offers 25 soups, 20 salads, and 10 drinks. The lunch
combo comes with EITHER one soup, one salad, and one drink, OR two soups and one
drink. How many different combos can you choose?

SOLUTION : By the multiplication principle, there are 25 · 20 · 10 ways to choose
one soup, one salad, and one drink. Also by the multiplication principle, there are
C(25, 2) · 10 ways to choose choose two different soups and one drink. (Note we use
combinations instead of permutations because the ordering of the soups is irrelevant.)
So by the addition principle, there are

25 · 20 · 10 + C(25, 2) · 10

different combos to choose from.

3. (10 points) The casino has an endless supply of $3 and $7 tokens. Prove it is possible,
using only these tokens, to place a bet for any dollar amount greater than or equal to
$12 .
SOLUTION : First we show explicitly that it is possible to place a bet of $12, $13, or
$14:

12 = 3 + 3 + 3 + 3 (1)

13 = 3 + 3 + 7 (2)

14 = 7 + 7. (3)

Note that every integer n ≥ 14 such that n = 2 mod 3 can be obtained by adding 3’s to
14. Similarly, every integer n ≥ 12 such that n = 0 mod 3 can be obtained by adding
3’s to 12. Finally, every integer n ≥ 13 such that n = 1 mod 3 can be obtained by
adding 3’s to 13. Since every integer is equal mod 3 to either 0, 1, or 2, we have proven
the claim for every integer n ≥ 12.



4. (5 points) Using a standard deck of 52 cards (4 suits, 13 cards each), how many ways
are there to draw six cards so that two cards come from one suit, two cards come from
another suit, and two cards come from yet another suit?
SOLUTION : Given a particular suit, there are C(13, 2) ways to choose two cards
from any given suit. Since there are C(4, 3) ways to choose the two different suits, there
are

C(4, 3) · C(13, 2) · C(13, 2) · C(13, 2)

ways of choosing the cards.

5. (5 points) You have 17 identical pieces of candy. You must divide all of the candy
among your six best friends. You may give each friend any amount of candy between 0
and 17 pieces (including 0 and 17), but you must give all 17 pieces away. In how many
ways can you do this?
SOLUTION : There are 17 pieces of candy to split into 6 different piles. This means
that we need 5 dividing walls to separate the piles. So there are 22 objects – 17 pieces
of candy and 5 walls. There are C(22, 5) ways to decide where to put the walls. This is
the answer.



6. (10 points) Let X = {1, 2, 3, . . . , 100}. How many subsets of X do not contain either
the element 1 or the element 2?
SOLUTION : Let Y = {3, 4, 5, . . . , 100}. Every subset of X that does not contain
either 1 or 2 is in one-to-one correspondence with a subset of Y . We know that there
are 298 subsets of Y , so there are 298 subsets of X that do not contain either the element
1 or the element 2.

7. (10 points) Let X = {1, 2, 3, 4, . . . , 699, 700}. Let A = {a ∈ X
∣∣a is divisible by 5}. Let

B = {a ∈ X
∣∣b is divisible by 7}. How many elements are in A ∪B?

SOLUTION : Recall that

|A ∪B| = |A|+ |B| − |A ∩B|.

First, we know that A has 140 elements because every 5th integer is divisible by 5, and
because 700

5
= 140. Similarly, B has 100 elements because every 7th integer is divisible

by 7, and because 700
7

= 100. Also,

A ∩B = {n ∈ X
∣∣n is divisible by 35},

so |A ∩B| = 700
35

= 20. Hence

|A ∪B| = |A|+ |B| − |A ∩B| = 140 + 100− 20 = 220.



8. (10 points) If x1, x2, . . . , xn are real numbers in the interval [0, 1], prove that

n∏
j=1

(1− xi) ≥ 1−
n∑

j=1

xj.

SOLUTION : We prove this by induction. First, if n = 1, this is obvious, since of
course 1− x1 ≥ 1− x1. Now assume that for some n, we know

n∏
j=1

(1− xj) ≥ 1−
n∑

j=1

xj.

(This is the induction hypothesis.) We must now prove

n+1∏
j=1

(1− xj) ≥ 1−
n+1∑
j=1

xj.

Note that by the induction hypothesis (which is used in the first inequality below),

n+1∏
j=1

(1− xj) = (1− xn+1)
n∏

j=1

(1− xj) (4)

≥ (1− xn+1)

(
1−

n∑
j=1

xj

)
(5)

= 1−
n∑

j=1

xj − xn+1 + xn+1

(
n∑

j=1

xj

)
(6)

≥ 1−
n∑

j=1

xj − xn+1 = 1−
n+1∑
j=1

xj, (7)

which is what we wanted to prove. The last inequality holds because

xn+1

(
n∑

j=1

xj

)
≥ 0.



2 YELLOW EXAM

1. (5 points) Suppose the local diner offers 17 soups, 22 salads, and 10 drinks.
The lunch combo comes with EITHER one soup, one salad, and one drink,
OR three different soups. How many different combos can you choose?

SOLUTION : By the multiplication principle, there are 17 · 22 · 10 ways to choose one
soup, one salad, and one drink. Also by the multiplication principle, there are C(17, 3)
ways to choose choose three different soups. (Note we use combinations instead of per-
mutations because the ordering of the soups is irrelevant.) So by the addition principle,
there are

17 · 22 · 10 + C(17, 3)

different combos to choose from.

2. (10 points) The casino has an endless supply of $3 and $8 tokens. Prove it is possible,
using only these tokens, to place a bet for any dollar amount greater than or equal to
$14 .
SOLUTION : First we show explicitly that it is possible to place a bet of $14, $15, or
$16:

14 = 8 + 3 + 3 (8)

15 = 3 + 3 + 3 + 3 + 3 (9)

16 = 8 + 8. (10)

Note that every integer n ≥ 14 such that n = 2 mod 3 can be obtained by adding 3’s to
14. Similarly, every integer n ≥ 15 such that n = 0 mod 3 can be obtained by adding
3’s to 15. Finally, every integer n ≥ 16 such that n = 1 mod 3 can be obtained by
adding 3’s to 16. Since every integer is equal mod 3 to either 0, 1, or 2, we have proven
the claim for every integer n ≥ 14.



3. (10 points) Recall that N = {0, 1, 2, 3, . . . } is the set of nonnegative integers. Define
the relation R as follows:

R = {(j, k) ∈ N × N
∣∣ the last digit of j is equal to the last digit of k }.

Is R a partial order? Is R an equivalence relation? Prove your answers.

SOLUTION : We can say already that R is not a partial order because (1, 11) ∈ R
and (11, 1) ∈ R, so R is not antisymmetric.
R is an equivalence relation. To prove this, we need to check that R is reflexive, transi-
tive, and symmetric.
R is reflexive. Proof: Of course (j, j) ∈ R because the last digit of j is equal to the
last digit of j.
R is symmetric. Proof: If (j, k) ∈ R, then the last digit of j is equal to the last digit
of k. Of course this is the same as saying that the last digit of k is equal to the last
digit of j; in other words, (k, j) ∈ R.
R is transitive. Proof: Suppose (j, k) ∈ R and (k, n) ∈ R. Then the last digit of j is
equal to the last digit of k, which is equal to the last digit of n. Hence (j, n) ∈ R.



4. (5 points) Using a standard deck of 52 cards (4 suits, 13 cards each), how many ways
are there to draw six cards so that three cards come from one suit and three cards come
from a different suit?
SOLUTION : Given a particular suit, there are C(13, 3) ways to choose three cards
from any given suit. Since there are C(4, 2) ways to choose the two different suits, there
are

C(4, 2) · C(13, 3) · C(13, 3)

ways of choosing the cards.

5. (5 points) You have 23 identical pieces of candy. You must divide all of the candy
among your six best friends. You may give each friend any amount of candy between 0
and 23 pieces (including 0 and 23), but you must give all 23 pieces away. In how many
ways can you do this?
SOLUTION :

There are 23 pieces of candy to split into 6 different piles. This means that we need 5
dividing walls to separate the piles. So there are 28 objects – 23 pieces of candy and 5
walls. There are C(28, 5) ways to decide where to put the walls. This is the answer.



6. (10 points) Let X = {1, 2, 3, . . . , 100}. How many subsets of X do not contain either
the element 1 or the element 2?
SOLUTION : Let Y = {3, 4, 5, . . . , 100}. Every subset of X that does not contain
either 1 or 2 is in one-to-one correspondence with a subset of Y . We know that there
are 298 subsets of Y , so there are 298 subsets of X that do not contain either the element
1 or the element 2.

7. (10 points) Let X = {1, 2, 3, 4, . . . , 899, 900}. Let A = {a ∈ X
∣∣a is divisible by 5}. Let

B = {b ∈ X
∣∣b is divisible by 9}. How many elements are in A ∪B?

SOLUTION : Recall that

|A ∪B| = |A|+ |B| − |A ∩B|.

First, we know that A has 180 elements because every 5th integer is divisible by 5, and
because 900

5
= 180. Similarly, B has 100 elements because every 9th integer is divisible

by 9, and because 900
9

= 100. Also,

A ∩B = {n ∈ X
∣∣n is divisible by 45},

so |A ∩B| = 900
45

= 20. Hence

|A ∪B| = |A|+ |B| − |A ∩B| = 180 + 100− 20 = 260.



8. (10 points) If x1, x2, . . . , xn are real numbers in the interval [0, 1], prove that

n∏
j=1

(1− xj) ≥ 1−
n∑

j=1

xj.

SOLUTION : We prove this by induction. First, if n = 1, this is obvious, since of
course 1− x1 ≥ 1− x1. Now assume that for some n, we know

n∏
j=1

(1− xj) ≥ 1−
n∑

j=1

xj.

(This is the induction hypothesis.) We must now prove

n+1∏
j=1

(1− xj) ≥ 1−
n+1∑
j=1

xj.

Note that by the induction hypothesis,

n+1∏
j=1

(1− xj) = (1− xn+1)
n∏

j=1

(1− xj) (11)

≥ (1− xn+1)

(
1−

n∑
j=1

xj

)
(12)

= 1−
n∑

j=1

xj − xn+1 + xn+1

(
n∑

j=1

xj

)
(13)

≥ 1−
n∑

j=1

xj − xn+1 = 1−
n+1∑
j=1

xj, (14)

which is what we wanted to prove.


