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Instructions:

• There are 8 problems. Make sure you are not missing any problems.

• Explain your answers using complete sentences. Writing a number alone is
not enough to earn full credit.

• No calculators, books, or notes are allowed.

• Do not use your own scratch paper.

Question Points Score

1 5

2 5

3 10

4 15

5 10

6 10

7 10

Total: 65



1. (5 points) How many ways are there to form distinct strings using the letters
in the word “differentiate”?

There are 13 total letters, 2 each of f, i, and t, and 3 of e. Using the notation from
class, we have n1 = 3, n2 = n3 = n4 = 2, and the rest of the nj are equal to 1, with
N = 13. This gives us the answer of

13!

3!2!2!2!
.

2. (5 points) A clothing store offers 7 different shirts, 9 different hats, and 11
different jackets. Suppose you need to buy EITHER one shirt, one hat, and
one jacket, OR two different shirts and one hat. In how many different ways can you
do this?

There are two dijoint options, so we figure out how many ways there are for each option
and then add them together. In the first option, we get one of each: using the multipli-
cation principle, there are 7 · 9 · 11 ways to do this. For the second option, we get two
different shirts and one hat: there are C(5,2) ways to choose the shirts and 9 ways to
choose the hat, for a total of C(5, 2) · 9 ways.

So the final answer is 7 · 9 · 11 + C(5, 2) · 9 .



3. (10 points) Let N be the set of nonnegative integers; i.e., N = {0, 1, 2, 3, . . . }.
Recall that P(N) is the set of all subsets of N. Define a relation R on P(N) as
follows: we say (A, B) ∈ R if and only if A ⊆ B. Is R an equivalence relation?
Is R a partial order? Prove both of your answers.

R is not an equivalence relation. To see this, we only need to show that R is not sym-
metric. To see that R is not symmetric, consider the two sets C = {0} and D = {0, 1}.
Obviously C ⊆ D, but D 6⊆ C since 1 ∈ D but 1 6∈ C. This means (C, D) ∈ R but
(D, C) 6∈ R.

R is a partial order. To see that R is reflexive, just note that A ⊆ A for any set A; in
other words, (A, A) ∈ R.

To see that R is antisymmetric, assume we have two sets A and B with (A, B) ∈ R and
(B, A) ∈ R. By the definition of R, this means A ⊆ B and B ⊆ A. But this is exactly
what it means for two sets to be equal; in other words, this means A = B. This proves
antisymmetry.

To see that R is transitive, assume (A, B) ∈ R and (B, C) ∈ R. This means A ⊆ B
and B ⊆ C. But if every element of A is in B, and every element of B is in C, then
every element of A is in C, proving that A ⊆ C. This means that (A, C) ∈ R, proving
transitivity.



4. (15 points) Let A and B be finite sets. Let f : A → B. (This means f is a
function from A to B.)
(A) (5 points) Define a relation R on A as follows: (x, y) ∈ R if and only if
f(x) = f(y). Prove R is an equivalence relation.
(B) (10 points) Assume f is one-to-one and onto. Prove that A and B contain
the same number of elements.

(A). R is reflexive because of course f(x) = f(x), which implies (x, x) ∈ R.

R is symmetric because if (x, y) ∈ R, then f(x) = f(y) which implies f(y) = f(x), and
hence (y, x) ∈ R.

R is transitive because if (x, y) ∈ R and (y, z) ∈ R, then f(x) = f(y) = f(z), proving
(x, z) ∈ R.

(B). First we prove #A ≤ #B. Write a1, . . . , an to denote the elements of A. We know
that f(aj) ∈ B for each j = 1, 2, . . . n, and that f(aj) 6= f(ak) unless aj = ak, since f is
one-to-one. Hence B contains at least n distinct elements, namely f(a1), f(a2), . . . , f(an).
This implies #B ≥ #A.

Now we show #A ≥ #B. Write b1, . . . , bm to denote the elements of B. Since f is onto,
we know there are x1, x2, . . . , xm ∈ A such that f(xj) = bj for each j ∈ {1, . . . m}. Since
f is a function, we know the elements x1, . . . , xm are distinct– in other words, A contains
at least m elements, proving that #A ≥ #B.

Since #A ≤ #B and #A ≥ #B, we know #A = #B.



5. (10 points) Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Let Y = {1, 2, 3, 4, 5}.
(A) (5 points) How many distinct functions are there from X to Y ?
(B) (5 points) How many distinct one-to-one functions are there from X to
Y ?

(A) There are 5 possibilities for f(1), 5 possibilities for f(2), . . . , and 5 possibilities for
f(10). Hence there are 510 possibilities for f .

(B) There are no one-to-one functions from X to Y . We can see this by looking at
the proof in the last problem that #A ≤ #B. In this problem, that would imply
10 = #X ≤ #Y = 5, which is false. Hence there can be no one-to-one functions from
X to Y . Alternatively, we could use the multiplication principle: There are 5 possibil-
ities for f(1), 4 possibilities for f(2), 3 possibilities for f(3), 2 possibilities for f(4), 1
possibility for f(5), zero possibilities for f(6), etc. Multiplying gives us 5 ·4 ·3 ·2 ·1 ·0 = 0.



6. (10 points) Let n ≥ 1 be an integer.
(A) Prove

n∑
k=0

C(n, k) = 2n

by using the binomial theorem. (3 points) (Remember that
∑n

k=0 C(n, k) =
C(n, 0) + C(n, 1) + C(n, 2) + · · ·+ C(n, n).)
(B) Prove the same statement WITHOUT using the binomial theorem. (7
points)

(A) Recall that the binomial theorem says

(a + b)n =
n∑

k=0

akbn−kC(n, k).

Using a = b = 1 gives us 2n =
∑n

k=0 C(n, k).

(B) We know that a set with n elements has 2n total subsets. We also know that a
set with n elements has C(n, k) subsets of size k. Since the total number of subsets is
the number of subsets of size 0 plus the number of subsets of size 1 plus the number of
subsets of size 2 plus . . . plus the number of subsets of size n, we have

2n = C(n, 0) + C(n, 1) + C(n, 2) + · · ·+ C(n, n) =
n∑

k=0

C(n, k),

which is what we wanted to prove.



7. (10 points) If x1, x2, . . . , xn are real numbers in the interval [0, 1], prove that

(1− x1)(1− x2) · · · (1− xn) ≥ 1− x1 − x2 − · · · − xn.

We prove this by induction. First, if n = 1, this is obvious, since of course 1−x1 ≥ 1−x1.
Now assume that for some n, we know

n∏
j=1

(1− xj) ≥ 1−
n∑

j=1

xj.

(This is the induction hypothesis.) We must now prove

n+1∏
j=1

(1− xj) ≥ 1−
n+1∑
j=1

xj.

Note that by the induction hypothesis,

n+1∏
j=1

(1− xj) = (1− xn+1)
n∏

j=1

(1− xj) (1)

≥ (1− xn+1)

(
1−

n∑
j=1

xj

)
(2)

= 1−
n∑

j=1

xj − xn+1 + xn+1

(
n∑

j=1

xj

)
(3)

≥ 1−
n∑

j=1

xj − xn+1 (4)

= 1−
n+1∑
j=1

xj, (5)

which is what we wanted to prove. Notice that the expression in line (3) is bigger than
the expression in line (4) because the last term in (3) is always nonnegative.


