Part I: Multiple choice. Please write your answers (A, B, C, ...) in the boxes on the right.

1. (3 points) Determine values of the constants a and b that make the differential equation exact.

$$(3x^2y - bx^5y^3) dx + (ax^3 + x^6y^2) dy = 0 (1)$$

C.
$$a = 2, b = 1$$

D.
$$a = -1$$
, $b = 2$
E. None of the above. $\frac{\partial Q}{\partial x} = 3ax^2 + 6x^5y^2$

2. (3 points) Consider the initial value problem

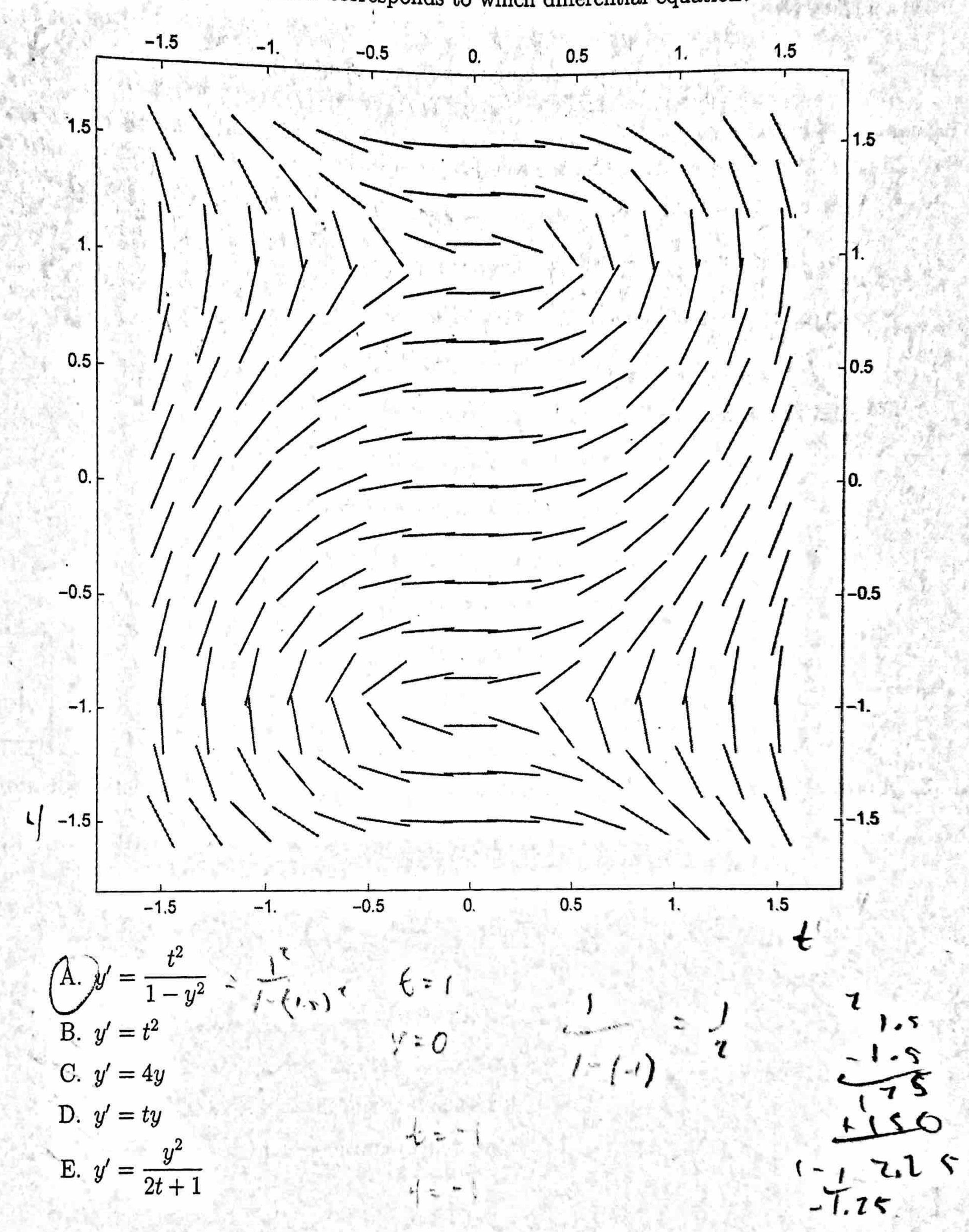
$$y' = (y^2 - 1)\sin^2(ty), y(0) = 2.$$

Which of the following is true?

A. -1 < y(t) < 1 for all t for which y is defined. Y (0): -1

- B. $y(t) < \sin^2(t)$ for all t for which y is defined.
- $(\mathcal{S})^{y}(t) > 1$ for all t for which y is defined.
 - D. $y(t) > t^2 1$ for all t for which y is defined.
 - E. None of the above.

3. (4 points) The slope field below corresponds to which differential equation?



A

$$\left(\frac{y}{x} + 8x\right) dx + (\ln x - 3) dy = 0 \tag{2}$$

is exact (you may assume that we are working in a rectangle R in the plane such that x > 0 for all (x, y) in R). If it is exact, find the solution.

A.
$$F(x,y) = y \ln x + 4x^2 - 3y$$
 $-\frac{\partial}{\partial y} \cdot z$ $\frac{1}{x}$
B. $F(x,y) = -\frac{y}{2} + \frac{1}{2} + 8$

B.
$$F(x,y) = -\frac{y}{x^2} + \frac{1}{x} + 8$$

C.
$$-\frac{y}{x^2} + \frac{1}{x} + 8 = C$$

D. $y \ln x + 4x^2 - 3y = C$

$$\frac{C}{x^2} - \frac{y}{x^2} + \frac{1}{x} + 8 = C$$

$$F(-y) = (1n + -3) \partial y$$

5. (4 points) Which of the following integrating factors is suitable for the differential equation $(x + 2) \sin y \, dx + x \cos y \, dy = 0$?

$$(x + 2) \sin y \, dx + x \cos y \, dy = 0?$$

A.
$$e^{\cos x}$$

B.
$$\sin x$$

$$\sum_{D.}^{\infty} xe^x$$
D. $1 + \frac{1}{x}$

$$\frac{1}{(x+z)\sin(\cos y - (x+z)\cos y)} = \cos y (1-(x+z))$$

6. (4 points) The function $\mu(x,y) = \frac{1}{x^2 + y^2}$ is an integrating factor for the equation

$$(x^2 + y^2 - x)dx - y dy = 0. (4)$$

Use this to solve the differential equation. You may assume that we are working in a rectangle R which does not contain the point (0,0).

$$F(x,y) = x - \arctan(x^2 + y^2)$$

$$F(x,y) = x - \frac{1}{2}\ln(x^2 + y^2)$$

$$F(x,y) = x - \frac{1}{2}\ln(x^2 + y^2)$$

$$C. x - \frac{1}{2}\ln(x^2 + y^2) = C$$

D.
$$x - \arctan(x^2 + y^2) = C$$

7. (3 points) True or false: there exists a differential equation of the form y' = f(t, y) such that fhas continuous partial derivatives on a rectangle R containing (0,0) and such that

$$y_1 = 2t \quad \text{and} \quad y_2 = 3t \tag{5}$$

are both solutions in R.

- A. False. The existence theorem forbids it.
- B. False. The uniqueness theorem forbids it.
 - C. True. The existence theorem guarantees it.
 - D. True. The uniqueness theorem guarantees it.

Part II: Free Response. Write up a full solution for each problem. A correct answer with an incomplete or incorrect solution will not receive full credit.

8. (6 points) Find the general solution of the linear equation

Box your answer

$$y'-2y=4t^3e^{2t}.$$
 $y'=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=2y=4t^3e^{2t}+2y$
 $y'=4e^{2t}+2y=4e^{2t}+2y=4e^{2t}$
 $y'=4e^{2t}+2e^{2t}+2e^{2t}$
 $y'=4e^{2t}+2e^{2t}+2e^{2t}$
 $y'=4e^{2t}+2e^{2t}+2e^{2t}$
 $y'=4e^{2t}+2e^{2t}+2e^{2t}$

9. (8 points) Consider two tanks, labeled tank A and tank B. Tank A contains 150 gal of solution in which is dissolved 12 lbs of salt. Tank B contains 300 gal of solution in which is dissolved 28 lbs of salt. Pure water flows into tank A at a rate of 4 gal/s. There is a drain at the bottom of tank A. The solution leaves tank A via this drain at a rate of 4 gal/s and flows immediately into tank B at the same rate. A drain at the bottom of tank B allows the solution to leave tank B at a rate of 1 gal/s. Set up, but do not evalute, a system of differential equations involving the variables x (amount of salt in tank A), y (amount of salt in tank B), and t (time in seconds). Do not forget to include any initial conditions. Box your entire answer

A! $\frac{17165}{150901}$ rake in = $\frac{0165}{5}$ Take Out: $\frac{\times (t)165}{150901}$. $\frac{4921}{5} = \frac{4\times (t)165}{1505}$ $\frac{d^{\times}}{dt} = \frac{-4\times (t)}{1505}$

B: $\frac{78 lbs}{200 gal}$ rate $\frac{4 \times 14b}{150 s}$ rate $0.04 = \frac{4 \times 14b}{300 gal}$. $\frac{19al}{300 s} = \frac{4(4) lbs}{300 s}$ $\frac{d4}{d4} = \frac{4 \times 11b}{140} - \frac{4(4)}{300} = \frac{8 \times -44}{140}$

 $\frac{\partial x}{\partial t} = \frac{-4x}{150} \times (0) = 12$ $\frac{\partial y}{\partial t} = 8x - \frac{y}{2} \times (0) = 13$

10. (5 points) The differential equation

$$y'' + 2t(y')^2 = 0$$

is an example of a second order differential equation. The change of variable v = y' (so that v' = y'') turns this equation into a first-order separable equation. Using this change of variable, find the particular solution which satisfies

$$y(1) = \frac{\pi}{2}, \quad y'(0) = 1.$$

Box your answer

$$Y = \alpha r ctan(t) + c$$
 $Y(t) = \frac{\pi}{2}$

Page 7

$$y^2y' = -y^3 + 3e^{-t} \tag{6}$$

is an example of a Bernoulli equation with degree n = -2. $7' = 37^2 / 3$

(a) The change of variables $z = y^3$ turns this equation into a first-order linear differential equation. Using this, write the linear equation above in the form z' = a(t)z + f(t). (I will not be grading your work for this problem, just your answer). Box your answer.

(b) Solve the differential equation. Your answer should be in the form $y(t) = \cdots$

='= v'(4)e->+ v(4)(-3)e->+ = -3(44))e->+ 1 9e-+

Page 8