33B Midterm 2

38 / 40

QUESTION 1

auto. Equation 11 pts

1.1 Phase Line 3/3

- √ 0 pts Correct
 - 1 pts arrows missing/wrong
 - 1 pts graph wrong somewhere
 - 1 pts missing scale
 - 3 pts not the phase line
 - 1 pts too many zero's in the graph

1.2 Eq. Solutions 3/3

- √ 0 pts Correct
 - 1 pts -3 no conclusion
 - 1 pts 2 is stable
 - 1 pts 5 is unstable
 - 2 pts Stable/unstable?

1.3 Graph sketch 2/2

- √ 0 pts Correct
 - 2 pts no solution/wrong solution
 - 1 pts graph between -3 and 2 wrong/missing
 - 1 pts graph between 2 and 5 wrong/missing

1.4 particular solution 3/3

- √ + 3 pts Correct
 - + 1 pts No
 - + 1 pts Uniqueness theorem can be applied
 - + 0 pts wrong/no answer
 - + 1 pts cannot cross the equilibrium solution y(t) = 2

QUESTION 2

Existence and Uniqueness 8 pts

2.1 Apply? Rectangle? 5 / 5

√ + 2 pts continuous

- √ + 2 pts derivative continuous
- √ + 1 pts rectangle
 - + 0 pts no points

2.2 x_0(2)=5? 3/3

- √ + 1 pts Correct
- √ + 2 pts justification
 - + 0 pts no points

QUESTION 3

3 Particular Solution 6 / 6

- √ 0 pts Correct
 - 1 pts Mixed up a minus sign
 - 3 pts Didn't try the right guess (ae^3t)
- **6 pts** Didn't attempt method of undetermined coefficients.
 - 1 pts Incorrect arithmetic in finding constant.
 - 1 pts Incorrect multiplication
 - 1 pts Put constant in solution
- **3 pts** Forgot to include an undetermined coefficients in MOC.

QUESTION 4

2. order equation constant coefficients 5 pts

4.1 verify solutions 3/3

- √ 0 pts Correct
 - 2 pts Didn't explicitly check boundary conditions
 - 1 pts Only checked one boundary condition
- 1 pts Didn't correctly check that they satisfy the ODE.

4.2 existence and uniqueness? 0 / 2

- 0 pts Correct
- 2 pts Didn't understand that solution was non-

unique.

√ - 2 pts Didn't state that the boundary conditions being defined at different times renders the existence and uniqueness theorem irrelevant.

- 1 pts Not clear if you actually meant that the

"initial" conditions are defined at different times.

QUESTION 5

2. order equation 7 pts

5.1 verify solutions 4 / 4

- √ 0 pts Correct
 - 2 pts incorrect calculation
 - 4 pts incorrect calculation

5.2 fundamental set 3/3

- √ 0 pts Correct
 - 1 pts conclusion is incorrect,
 - 1 pts some work, calculation incorrect,
 - 3 pts conclusion incorrect, wrong calculation
 - 2 pts some work

QUESTION 6

6 planar system 3/3

- √ 0 pts Correct
 - 2 pts incorrect, but some work
 - 1 pts minor mistake
 - 3 pts no work

MIDTERM 2

11/16/2018

Name:

section:

Math33B Nadja Hempel nadja@math.ucla.edu

UID:

Problem	Points	Score
1	11	
2	8	
3	6	
4	5	
5	7	. ^ .
6	3	
Total	40	

Instructions

- (1) This exam has 6 problems. Make sure you have all pages.
- (2) Enter your name, SID number, and discussion section on the top of this page.
- (3) Use a PEN to record your final answers.
- (4) If you need more space, use the extra page at the end of the exam.
- (5) NO Calculators, computers, books or notes of any kind are allowed.
- (6) Show your work. Unsupported answers will not receive full credit.
- (7) Good Luck!

Exercise 1. (11pt)

Consider the autonomous first-order differential equation.

$$y' = (y+3)^2(y-2)(y-5)$$

(1) Draw the phase line. (3pt)

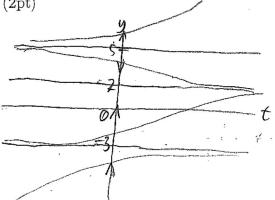
(2) What are the equilibrium solutions? Which are stable, and which are unstable? (3pt)

-3: undetermined

2: stable

5: un Hable

(3) Sketch the graph of at least one solutions between each pair of adjacent equilibrium solutions. (2pt)



(4) Let $y_p(t)$ be a particular solution to the equation which satisfies $y_p(0) = 0$. Is it possible that $y_p(2) = 2$? Justify your answer. (3pt)

No: y(t)=2 is an equilibrium solution and 50 is y(t)=-3. According to the uniqueness theorem, only one solution can exist with $y_p(z)=2$, which is y(t)=2, so no others can cross it. The solution corresponding to $p_y(0)=0$ is some solution between y(t)=-5 and y(t)=2.

Exercise 2. (8pt) Consider the differential equation

$$\frac{dx}{dt} = \frac{\sqrt{x^2 - 4}}{t^2}$$

(1) Can you apply the existence and uniqueness theorem to the initial value problem $x_0(1) = 6$? Justify your answer and give the biggest rectangle in which you can apply it containing the given point (if it exists). (5 pt)

$$f(x,t) = \frac{\int x^2 - 4}{t^2} \quad cont. \quad x \ge 2 \quad x \le -2.$$

$$\frac{Qf}{0x} = \frac{2x}{2t^2 \sqrt{x^2 - 4}} = \frac{x}{t^2 \sqrt{x^2 - 4}}$$
 cont. $x > 2 \times x < -2$

The existence and uniqueness thin. applies to the largest rect. on which f(x,t) and $\frac{2f}{\partial x}$ are continuous. In this case, for $\chi_0(1) = 6$, $\chi_0(1) = 6$, $\chi_0(1) = 6$

(2) Can $x_0(2) = 5$ ($x_0(t)$ is the solution to the initial value problem in part 1))?(1pt) Justify your answer. (2pt)

Mb, $\frac{dx}{dt}$ is always >0, so an equation $K_0(t)$ with a point $X_0(1)=6$ will have $X_0(2)>6$.

Exercise 3. (6pt) Find a particular solution to the following differential equation $3y'' + 2y' - y = -4e^{3t}.$

Try:
$$y = Ce^{3t}$$

 $y' = 3Ce^{3t}$
 $y'' = 9Ce^{3t}$
 $27Ce^{3t} + 6Ce^{3t} - Ce^{3t} = -4e^{3t}$
 $32Ce^{3t} = -4e^{3t}$
 $\Rightarrow C = -\frac{1}{8}e^{3t}$

$$y'' + y = 0$$
 $y(0) = 0$ $y'(\pi/2) = 0$

(1) Show that $y(t) = C \cdot \sin(t)$ is a solution for any constant C. (3pt)

(2) Why does this not violate the 2. order existence and uniqueness theorem? (2pt)

This is a homogeneous equ, discontinuous at y=0, so the existence & uniqueness theorem only applies on intenal where y =0.

Exercise 5. (8pt) Consider the differential equation

$$y'' + \frac{1+x}{x}y' - \frac{1}{x}y = 0$$

(1) Check that 1+x and $\frac{2x^2+6x+4}{x-2}$ are solutions to the above equation. (4pt)

$$y_1' = 1 + x$$

 $y_1' = 1$ $0 + \frac{1+x}{x}(1) - \frac{1}{x}(1+x) = 0$ $y_1'' = 0$

Removable discont?

$$y_2 = \frac{2x^2 + 6x + 4}{x + 2} = \frac{(2x + 2)(x + 2)}{(x + 2)} = 2x + 2$$

$$y_2' = 2$$

$$0 + \frac{1+x}{x}(2) - \frac{1}{x}(2x+2) = 0$$

- (2) Do they form a fundamental set of solutions?(1pt) Justify your answer. (2pt)
 - No, they are not linearly independent.

$$\frac{y_2}{y_1} = \frac{2x+2}{x+1} = 2$$

Exercise 6. (3pt)

Consider the second order equation

$$y'' - 2e^t y' - \tan(t)y = \sqrt{t^2 + 1}.$$

Write this equations as a planar system of first-order equations.

$$\begin{aligned}
x &= y' \\
x' &= y'' \\
x! &= 2e^{\xi} x + tan(t) \cdot y + J t^2 + 1 \cdot | \\
x &= y'
\end{aligned}$$

Extra page

Extra page