20W-MATH33B-1 Midterm 1

RISHAB JAIN

TOTAL POINTS

49 / 50

QUESTION 1

1 Q1 10 / 10

✓ - 0 pts Correct

- **3 pts** Find the integrating factor or homogeneous solution.

- 2 pts Multiply whole equation by integrating factor
- 2 pts Integrate the equation
- 3 pts Solve the initial value problem
- 1 pts Minor computational mistake
- 2 pts Wrong sign in integrating

factor/homogeneous solution

- 2 pts Find v' in variation of parameters

QUESTION 2

2 Q2 10 / 10

✓ - 0 pts Correct

- 0 pts Solve explicitly for y.
- 2 pts Algebra/integration error (see
- explanation/arrow)

1 pts Solutions are given by setting F(x,y) = C;
 you've just written out F(x,y).

- **1 pts** Simplify by clearing out the natural logs and/or absolute values.

- 2 pts Where is your undetermined constant C?
- 1 pts Rewrite v in terms of y and x.

QUESTION 3

Q3 15 pts

3.1 (a) 5 / 5

✓ - 0 pts Correct

- 2 pts correct idea
- 3 pts no explanation but right answer
- 1 pts miscellaneous mistakes
- 4 pts tried

3.2 (b) 10 / 10

✓ - 0 pts Correct

- 1 pts miscellaneous mistake
- 8 pts tried
- 6 pts used exactness
- 5 pts had the right idea

- **3 pts** had the right idea and made a logical mistake

QUESTION 4

15 pts

4.1 a 5 / 5

+ 5 Point adjustment

4.2 b 3/3

✓ - 0 pts Correct

- 1 pts forget y<1 and y >2
- 3 pts blank answer
- 1 pts solutions can not cross each other
- 0.5 pts not dotted line. solution curve is continous
- 1 pts picture not correct.
- 2 pts where is the solution curves
- 0.5 pts 0<y<1 should be S-shape
- 2.5 pts not correct
- 1 pts 0<y<1 not correct

4.3 C 3 / 4

- 0 pts Correct
- 4 pts blank
- 3 pts not a proof.
- 1 pts didn't check \\partial f / \\ partial y
- 0.5 pts \\partial f / \\ partial y wrong
- 2 pts Wrong theorem conditions.
- 2 pts didn't check theorem condition
- \checkmark 1 pts didn't calculate partial derivative

- 1 pts More detail
- **0.5 pts** minor mistake
- 0 pts correct

4.4 d 3/3

✓ - 0 pts Correct

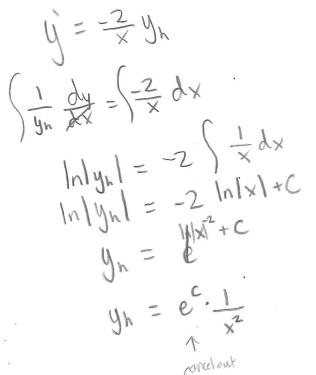
- 3 pts not correct
- 2 pts with some reason
- 1 pts right track, wrong answer

Haofei Fan

Math 33B

Midterm 1

Last Name:	Jain		
First Name:	Kishab		
Student ID:	0054091	541	
Signature:	Rishal	dein	
Section:	Tuesday:	Thursday:	
	1A	1B	TA: YIH, SAMUEL
	1C	1D	TA: KIM, BOHYUN
	1E	1F	TA: BOSCHERT, NICHOLAS
			· · · · · ·


Instructions: Do not open this exam until instructed to do so. You will have 50 minutes to complete the exam. Please print your name and student ID number above, and circle the number of your discussion section. You may not use calculators, books, notes, or any other material to help you. Please make sure your phone is silenced and stowed where you cannot see it. You may use any available space on the exam for scratch work. If you need more scratch paper, please ask one of the proctors. You must show your work to receive credit. Please circle or box your final answers.

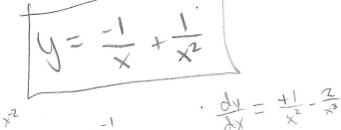
Please do not write below this line.							
	Question	Points	Score				
-	1	10					
	2	10					
	3	15					
	4	15					
	Total:	50					

1. (10 points) Solve the initial value problem:

 $x^2y' + 2xy + 1 = 0, y(1) = 0$ $x^{2}y^{2} = -2xy - 1$ $y' = -\frac{2xy}{x^2} - \frac{1}{x^2}$ $\dot{y} = -\frac{2}{x}y - \frac{1}{x^2}$

 $v = \frac{1}{x^2}$ \ dv = \-1 dx $V = (-X+C)\frac{1}{e^{c}}$

 $\frac{-1}{\sqrt{2}} = f$


$$y \cdot y_{h} = \frac{4^{c} \cdot \frac{1}{x^{2}} \left(-x + c \right) \frac{1}{x^{2}}}{y} = \frac{-1}{x} + \frac{c}{x^{2}}$$

$$0 = -1 + c$$

$$(=$$

 $\frac{1}{x^2} - \frac{2}{x^3}$

 $+\frac{1}{\chi^2}-\frac{1}{\chi^3}-\frac{1}{\chi^2}$

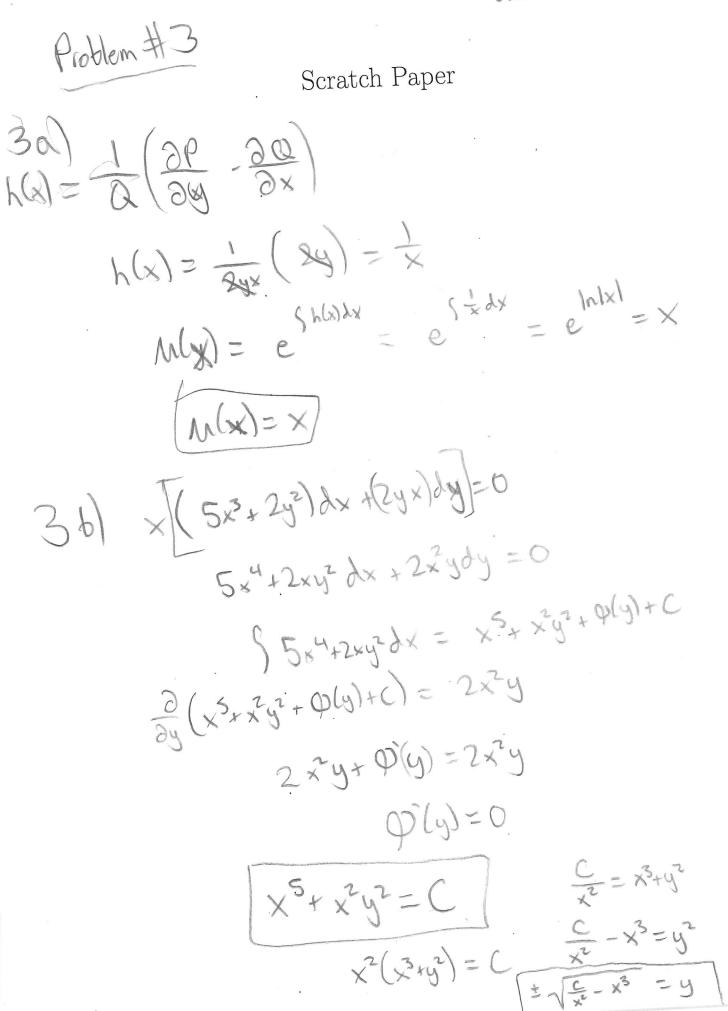
- ×

Last six digits of UID: 40904

2. (10 points) Solve the homogeneous equation:

(3x+2y)dx + xdy = 0. $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ 2 7 1. 1st degree henrigeneus (3xt2) dx + x dy = 0 y=xv (3x+2xy)dx+x(vdx+xdy)=03xdx+2xvdx+xvdx+x2dv=0 3x dx + 3xv dx +x2du=0 $\frac{3\times(\Lambda+\nu)}{\times^2(1+\nu)}dx = -\frac{\chi^2d\nu}{\chi^2(1+\nu)}$ $\frac{3}{x} dx = \frac{-1}{1+1} dv$ 7 x (xry) = A 3 5 t dx = -1 5 t du $xry = \frac{A}{x^2}$ $3 \ln |x| = -1 (\ln |1+v|+C)$ $3 \ln |x|^2 = \ln |1+v|^2 + C$ y = A - xx3 = (1+v) = e $\chi^3 = \frac{A}{1+1}$ $(1+v)x^{3} = A$ $x^3 + v \times (x^2) = A$ x3+x2y=A

409041 3. Consider the following differential equation: $(5x^3 + 2y^2)dx + 2yxdy = 0$ (a) (5 points) The above differential equation has a one-variable integrating factor (i.e. $\mu(x)$ or $\mu(y)$) Find the intergrating factor. $h(x) = p\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = \frac{1}{5x^3x^3y^2}\left(2y\right) = \frac{2y}{5x^3x^3y^2}$ $N(k) = p\left(\frac{\partial p}{\partial y} - \frac{\partial (k)}{\partial x}\right) = \frac{1}{5x^{3}x^{3}x^{2}}\left(2y\right) = \frac{2y}{5x^{3}x^{2}x^{2}}$ $N(k) = p\left(\frac{\partial p}{\partial y} - \frac{\partial (k)}{\partial x}\right) = \frac{1}{5x^{3}x^{2}y^{2}}\left(2y\right) = \frac{2y}{5x^{3}x^{2}y^{2}}$ $\int \frac{2y}{5x^{3}x^{2}y^{2}} \frac{dy}{4y}$ $= \int \frac{2y$ (b) (10 points) Find the general solutions to the above differential equa-See which any 1550-242 (5x3+22y2) div + 1/5x3-242 29× dy=0 $\frac{50}{2(5x^{2}+2y^{2})^{4}y} = 0$ $\sqrt{5x^{2}+2y^{2}} dx + \frac{2y^{2}}{\sqrt{5x^{2}+2y^{2}}} dy = 0$ $2y - 5x^{3} + 2y^{2} - 2yx(2)(5x^{3})^{1/2}(15x^{3}) = \frac{30x^{2}(5x^{3}+2y^{3})}{(5x^{3}+2y^{3})^{1/2}(15x^{3}+2y^{3})} = \frac{30x^{2}(5x^{3}+2y^{3})}{(5x^{3}+2y^{3})^{1/2}(15x^$ $x^{5} + x^{2}y^{2} = C$ $y = \pm \sqrt{\frac{c}{x^{2}} - x^{3}}$



Last six digits of UID: 409041

4. Consider the autonomous equation: y' = (y - 1)(y - 2)(a) (5 points) Find the general solutions y(t) to the above differential 7 y - Acty = 2 - Act y(1 - Act) = 2 - Act y = 2 - Act 1 - Act(y-1)(y-2)dy = (dt A=ec equations. A + B dy = trc y-2 = Aety-Aet Arl Ars (b) (3 points) Sketch the solutions on the t - y plane. (c) (4 points) Prove that if y(t) is a solution and y(0) = 1.9, then 1 < 1y(t) < 2 for all $t \in (-\infty, \infty)$ since $f(t_y)$ and $\frac{\partial f}{\partial y}$ is continuous on \mathbb{R}^2 , we know that no two solutions can cross by with each other by the uniqueness theorem, Since we know $y_1(t) = 1$ and $y_2(t) = 2$ and y(0) = 1.9 starts in between these two solutions, we know y(t) cannot cross $y_1(t)$ nor $y_2(t)$ for k^2 . As a result, $|\xi y(t)| \leq 2$ for all possible values of t (3 points) Let $y_1(t)$ be the function in part(a) Calculate lim (d) (3 points) Let y(t) be the function in part(c). Calculate $\lim_{t\to+\infty} y(t)$. THE Since y is decreasing to in between y=1 and y=1 lim y(t)=1 t>00

UID: 409041

Some useful formulas, etc:

Integrating factor u(x) of a 1st Order Linear DE x' = ax + f:

$$u(x) = e^{-\int a(t)dt}$$

Single variable integrating factor μ for Pdx + Qdy = 0

• If
$$h(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$
,
 $\mu(x) = e^{\int h(x)dx}$
• If $g(y) = \frac{1}{P} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$,
 $\mu(y) = e^{-\int g(y)dy}$

