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1. (10 points) Solve the homogeneous equation (Your final answer should be
in y = f(x, C) form, e.g y = 1

C+x):

(−xy + y2)dx + x2dy = 0.



Last six digits of UID:

2. (a) (5 points) Find the general solution to the differential equation:

y′′ − 2y′ + y = 0

(b) (10 points) Find a particular solution to the differential equation
(Hint: split forcing term into two parts, check the table in P172
of your textbook):

y′′ − 2y′ + y = et(t + 1) + et sin t.



3. (a) (10 points) Find the general solution (ygeneral = C1y1(t) + C2y2(t)) to
the following 2× 2 system y′ = Ay , where

A =
(
−2 −2
2 3

)

(b) (5 points) Sketch the solutions on the phase plane. (i.e. Draw the
phase plane portrait)



Last six digits of UID:

4. (10 points) Find the solution y(t) to the following 3×3 system with given
initial condition y(0) = (2,−2, 1)T :

y′ =

 3 1 1
−1 1 −1
1 1 2

y

(Hint: Use rational zero theorem to find integer roots of the characteristic
polynomial)



5. (15 points) Find the general solution(fundamental set) y(t) to the follow-
ing 6× 6 system:

y′ =



0 0 0 0 0 0
0 2 1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −2
0 0 0 0 2 0

y

(Hint : This is a block matrix. Try find a 1 by 1, 3 by 3, and 2 by 2
block.)
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6. Consider the autonomous equation:

y′ = sin y + cos y

(a) (5 points) Find all equilibria of the differential equation.

(b) (5 points) Sketch the solutions on the t− y plane.

(c) (5 points) Prove that if y(t) is a solution, then y(t) is a bounded
function. (In other words, given a solution y(t), there exists m, M

such that, m < y(t) < M for all t ∈ (−∞, +∞))



7. Let a be a positive integer(it is a fixed unknown number). Consider the
following differential equation:

(t2 − a2)y′ = y + t2 − t− a2.

(a) (5 points) Find the general solution to the above differential equa-
tion.

(b) (3 points) Consider the above differential equation together with the
initial condition y(a) = b (initial value problem), where b is a real
number. Prove that,
• if b = a, there are infinite many solution to the initial value
problem. (i.e. go through the initial condition.)
• if b 6= a, there is no solutions to the initial value problem.

(c) (2 points) Does the above (weird) result contradict with the exis-
tence and uniqueness theorem? Why?
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8. (10 points) Calculate etA, where A =
(

a b
0 a

)
(Hint: Use truncation formula)


