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1. (10 points) Solve the initial value problem:

(1 + t2)y′ + 4ty = 1
t2 + 1 , y(0) = 2

.
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2. (a) (2 points) Find the general solution yh = C1y1 + C2y2 to the differ-
ential equation:

y′′ − 3y′ + 2y = 0

(b) (8 points) Use undetermined coefficient or variation of parameters,
find the general solution to the differential equations

y′′ − 3y′ + 2y = et + sin t.



3. (10 points) Solve the differential equation:

(3x2 + y2 + 2xy)dx+ (3y2 + x2 + 2xy)dy = 0
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4. Consider the autonomous equation:

y′ = y sin(y)

(a) (4 points) Find the equalibrium solutions of the above differential
equations.

(b) (5 points) Determine the stability of the equalibrium solutions.

(c) (6 points) Sketch the solutions in the following rectangle region: R =
{(t, y)| − 2π < y < 2π,−5 < t < 5}. These equalibrium divide the
R into several regions, sketch at least one solution in each of these
regions.



5. Let A be the following 2× 2 matrix:

A =
(
−4 1
2 −5

)
(a) (5 points) Find the general solution y(t) to the 2× 2 system

y′ = Ay.

Question 5 continues on the next page. . .
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(b) (2 points) State the type of equilibrium (i.e. The type of Phase
Portraits: Saddle, Nodal Source/Sink, Spiral Source/Sink or Cen-
ter ,etc.)

(c) (8 points) Sketch the phase portraits (you also have to show the
direction of the non-equilibrium solution curves on phase plane).



6. (15 points) Find the solution y(t) to the following 3×3 system with given
initial condition y(0) = (−1, 1,−1)T :

y′ =

−1 −4 −4
2 5 4
−1 −2 −1

y

(Hint: Use rational zero theorem to find integer roots of the characteristic
polynomial)
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7. (15 points) Find the general solution(fundamental set) y(t) to the follow-
ing 5× 5 system:

y′ =


0 1 1 0 0
1 0 −1 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 1 0

y

(Hint: Use rational zero theorem to find integer roots of the characteristic
polynomial, Characteristic polynomial of the matrix is λ5 − λ4 − λ + 1.
This is a block matrix. You can also think about the method we talked
in the last lecture.)



8. (10 points) Let y(x) be the solution to the initial value problem:

y′ = sin(y − x) + 1, y(0) = 1.

Prove that y(x) > x for all x ∈ R. (Hint: This differential equation
has no equalibrium, but you can guess a non-constant solution of y′ =
sin(y − x) + 1, then apply existence and uniqueness theorem.)
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Scratch Paper
Some useful formulas, etc:

Integrating factor u(x) of a 1st Order Linear DE x′ = ax+ f :

u(x) = e−
∫

a(t)dt

Single variable integrating factor µ for Pdx+Qdy = 0

• If h = 1
Q

(
∂P
∂y −

∂Q
∂x

)
,

µ(x) = e
∫

h(x)dx

• If g = 1
P

(
∂P
∂y −

∂Q
∂x

)
,

µ(x) = e−
∫

g(x)dx

Variation of Parameters, (2nd Order Differential Equations)

v1(x) = −
∫ 1
W
y2(x)f(x)dx

v2(x) =
∫ 1
W
y1(x)f(x)dx


