MATH 33B: MIDTERM 2

Question 1.

Consider the autonomous differential equations $y' = y(y-1)f(y)$ with the function $f(y)$ having the graph below.

- (1) Construct the phase line and classify each equilibrium point as either unstable or asymptotically stable.
- (2) Sketch the equilibrium solutions in the ty-plane. These equilibrium solutions divide the ty-plane into regions. Sketch at least one solution curve in each of these regions.
- (3) Predict the limiting behavior of the solution to the initial value problem

$$
y' = y(y - 1)f(y), \quad y(0) = y_0
$$

depending on the initial value y_0 . Make sure to consider all possible cases!

Solution:

(1) The equilibrium points occur at $y = -1, 0, 1$. The phase line is:

The equilibrium point $y = -1$ is stable; the other two are not.

(2) From the phase line, we obtain the following possible graphs of $y(t)$:

(3) The initial condition is $y(0) = y_0$. By inspecting either the graph or the phase line, we see that

$$
\lim_{t \to \infty} y(t) = \begin{cases} \infty & y_0 > 1 \\ 1 & 0 < y_0 \le 1 \\ 0 & y_0 = 0 \\ -1 & y_0 < 0 \end{cases}
$$

Question 2.

(1) Find the general solution to the following homogeneous second-order linear differential equation:

$$
y'' + 4y' + 4y = 0.
$$

(2) Use variation of parameters to find the solution to the following initial value problem (on the interval $(0, +\infty)$: $2t$

(i)
$$
y'' + 4y' + 4y = t^{-2}e^{-2}
$$

(ii) $y(1) = 0$, $y'(1) = 0$.

Solution:

(1) The characteristic polynomial associated to this linear differential equation is

$$
X^2 + 4X + 4 = (X + 2)^2
$$

So we have a repeated root of $X = -2$. This means that a fundamental set of solutions is provided by $y_1 = e^{-2t}$ and $y_2 = te^{-2t}$. The general solution is any linear combination of these two:

$$
y = C_1 e^{-2t} + C_2 t e^{-2t}
$$

(2) The method of variation of parameters tells us we can find a particular solution $y_P = u_1y_1+u_2y_2$ where u_1, u_2 are given by the formulas

$$
u_1 = -\int \frac{y_2 t^{-2} e^{-2t}}{W}
$$

$$
u_2 = \int \frac{y_1 t^{-2} e^{-2t}}{W}
$$

and

where W is the Wronskian of y_1, y_2 . Computing the Wronskian gives

$$
W = y_1 y_2' - y_1' y_2 = e^{-2t} (te^{-2t})' - (e^{-2t})' te^{-2t} = e^{-2t} (e^{-2t} - 2te^{-2t}) + 2e^{-2t} te^{-2t} = e^{-4t}
$$

Now we can compute u_1 and u_2 :

$$
u_1 = -\int \frac{te^{-2t}t^{-2}e^{-2t}}{e^{-4t}} = -\int t^{-1} = -\ln|t|
$$

and

$$
u_2=\int\frac{e^{-2t}t^{-2}e^{-2t}}{e^{-4t}}=\int t^{-2}=-\frac{1}{t}
$$

(Now we are only interested in the interval $t > 0$ in this problem, so from here on we will omit the absolute value).

Putting these together gives us a particular solution of

$$
y_P = -(\ln t)e^{-2t} - e^{-2t}
$$

The solution to the initial value problem will be this particular solution modified by a solution to the homogeneous equation, like

$$
y = y_P + C_1 e^{-2t} + C_2 t e^{-2t}
$$

We just need to determine the coefficients C_1, C_2 . We have

$$
y = -(\ln t)e^{-2t} - e^{-2t} + C_1e^{-2t} + C_2te^{-2t}
$$

and

$$
y' = 2(\ln t)e^{-2t} - \frac{1}{t}e^{-2t} + 2e^{-2t} - 2C_1e^{-2t} + C_2e^{-2t} - 2C_2te^{-2t}
$$

So from $y(1) = 0$ we get

$$
0 = e^{-2}(-1 + C_1 + C_2)
$$

and from $y'(1) = 0$ we get

$$
0 = e^{-2}(-1 + 2 - 2C_1 + C_2 - 2C_2) = e^{-2}(1 - 2C_1 - C_2)
$$

This gives a system of equation

$$
C_1 + C_2 = 1
$$

$$
2C_1 + C_2 = 1
$$

Solving however one likes gives $C_1 = 0, C_2 = 1$. This gives us the solution of iniital value problem: $y = -(\ln t)e^{-2t} - e^{-2t} + te^{-2t} = (t - \ln t - 1)e^{-2t}$

Question 3.

- (1) Use the method of undetermined coefficients to find particular solutions to each of the following:
	- (a) $y'' 2y' 3y = e^{-t}$ (b) $y'' - 2y' - 3y = t$
- (2) Find the general solution to the following:

$$
y'' - 2y' - 3y = 2e^{-t} - 3t
$$

(*Hint*: use (1)).

Solution: Note that the characteristic polynomial for $y'' - 2y' - 3y$ is $(x+1)(x-3)$, so the general solution to the homogeneous equation is $Ae^{-t} + Be^{3t}$.

(1) For equation (a), our target function is an exponential and a solution to the homogeneous equation, so our guess should be

$$
y(t) = Ate^{-t}.
$$

Plugging into equation (a) we get

$$
e^{-t} = y'' - 2y' - 3y = A(-2e^{-t} + te^{-t}) - 2A(e^{-t} - te^{-t}) - 3Ate^{-t} = A(-4)e^{-t},
$$

so $A = \frac{-1}{4}$.

For equation (b) , our target is a polynomial of degree 1, so our guess should be

$$
y(t) = At + B.
$$

Plugging in, we get

$$
t = y'' - 2y' - 3y = -2A - 3(At + B) = -3At - (3B + 2A)
$$

So, $A = \frac{-1}{3}$ $\frac{-1}{3}, B = \frac{2}{9}$ $\frac{2}{9}$.

(2) From (1) and the superposition rule, a particular solution to our equation is

$$
\frac{-1}{2}te^{-t} + t - \frac{2}{3}
$$

Combining this with the solution to the homogenous equation gives the general solution

.

$$
y(t) = Ae^{-t} + Be^{3t} + \frac{-1}{2}te^{-t} + t - \frac{2}{3}.
$$

Question 4.

(1) Consider the homogeneous equation

$$
t^2y'' - 5ty' + ky = 0, \quad \text{for } t > 0.
$$

Determine a real number k such that $y_1(t) = t^3$ is a solution.

(2) Consider the equation

$$
(*)\hspace{7cm} t
$$

 $2y'' - 5ty' + ky = t^3$, for $t > 0$.

with the fixed k that you found in part (1) .

Look for a solution to (*) of the form $y(t) = v(t)y_1(t)$, where $v(t)$ is an unknown function. That is, plug this substitution into the equation, simplify, and derive a (first-order linear) differential equation for $w(t) = v'(t)$.

(3) Use part (2) to find the general solution to $(*)$.

(4) Find $y_2(t)$, which, together with $y_1(t) = t^3$, would form a fundamental set of solutions to the homogeneous equation associated with (∗). Explain!

Show your work!

Solution. (1) Let $y(t) := t^3$, note that $y'(t) = 3t^2$ and $y''(t) = 6t$. Plugging $y(t)$ into the lefthand side of the equation we see that

$$
t^{2}y''(t) - 5ty'(t) + ky(t) = t^{2} \cdot 6t - 5t \cdot 3t^{2} + kt^{3}
$$

= (6 - 15 + k)t³
= (-9 + k)t³

Thus, in order to make the LHS = 0 when we plug in $y(t) = t^3$, we require $k = 9$.

(2) We will look for a solution of the form $y(t) = v(t)y_1(t) = v(t)t^3$. First we compute the first and second derivatives of $y(t)$:

$$
y'(t) = 3vt^{2} + v't^{3}
$$

$$
y''(t) = 6vt + 3v't^{2} + 3v't^{2} + v''t^{3}
$$

Next we substitute $y(t)$ into the lefthand side of the equation (with $k = 9$):

$$
t^{2}y''(t) - 5ty'(t) + 9y(t) = t^{2}(6vt + 3v't^{2} + 3v't^{2} + v''t^{3}) - 5t(3vt^{2} + v't^{3}) + 9vt^{3}
$$

= $t^{3}(6v + 3tv' + 3tv' + t^{2}v'' - 15v - 5tv' + 9v)$
= $t^{3}(t^{2}v'' + tv')$

Since the lefthand side must equal the righthand side, we get the equation:

$$
t^3(t^2v'' + tv') = t^3
$$

Dividing by t^3 (which is allowed, since we are only considering values $t > 0$), we get the equation:

$$
t^2v'' + tv' = 1.
$$

Next we divide by t^2 :

$$
v'' + \frac{1}{t}v' = \frac{1}{t^2}
$$

Making the substitution $w(t) = v'(t)$, we get the first-order linear equation:

$$
w' + \frac{1}{t}w = \frac{1}{t^2}.
$$

(3) We will now solve for $(*)$. First we solve for $w(t)$: compute the integrating factor:

$$
\mu(t) = \exp\left(\int \frac{dt}{t}\right) = \exp(\ln|t|) = |t| = t \quad \text{(since } t > 0\text{)}
$$

and then simplify the first-order equation to:

$$
(tw)' = \frac{1}{t}
$$

Integrating both sides yields:

$$
tw(t) = \ln t + C_1
$$

and so

$$
w(t) = \frac{\ln t}{t} + C_1 \frac{1}{t}
$$

Since $v'(t) = w(t)$, we now get the differential equation

$$
v'(t) = \frac{\ln t}{t} + C_1 \frac{1}{t}.
$$

Integrating both sides yields:

$$
v(t) = \frac{(\ln t)^2}{2} + C_1 \ln t + C_2.
$$

This is the general solution for the second-order equation which $v(t)$ satisfies. To get the general solution to $(*)$ we need to multiply by y_1 :

$$
y(t) = \frac{t^3(\ln t)^2}{2} + C_1 t^3 \ln t + C_2 t^3.
$$

(4) Consider the following two solutions to the inhomogeneous equation:

$$
z_1(t) := \frac{t^3(\ln t)^2}{2} + t^3 \ln t + t^3
$$

$$
z_2(t) := \frac{t^3(\ln t)^2}{2} + t^3
$$

(corresponding to $(C_1, C_2) = (1, 1)$ and $(0, 1)$, respectively). Then $y_2(t) := z_1(t) - z_2(t) = t^3 \ln t$ is a solution to the homogeneous equation. Since $y_2(t)$ is linearly independent from $y_1(t)$, we conclude that y_1, y_2 is a fundamental set of solutions to the homogeneous equation.