University of California, Los Angeles Fall 2021 Instructor: C. Wang Date: Dec 4, 2021

MATH 33B: DIFFERENTIAL EQUATIONS FINAL EXAM

Last Name	Zhou		
First Name	Eic		·
Student ID	008717978		
TA Nome	Chan	·	

					-
		•			,
		•			
•					
	•				
			_		
			·		,
				•	
	-		•		
			,		•
			••		

			_		
					•
			.*		-

1. (12 points) Find the general solution for $\mathbf{x}' = A\mathbf{x}$, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

$$A - \lambda \Sigma = \begin{pmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{pmatrix}$$

$$Act(A - \lambda \Sigma) = (1 - \lambda)(1 - \lambda) = 0$$

$$\lambda = 1$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

4=(0) and 4=(0)

			•	
•			•	
			•	
	•			
	,			•
				•
•		•		
,				
	·			

- 2. (16 points) (a) Converting the following equation to a system of first order differential equations.
 - (b) Find the corresponding characteristic polynomial and all the eigenvalues.

$$y''' - 2y'' - y' + 2y = 0.$$

$$y''' - 2y'' - y' + 2y = 0.$$

$$y''' - 2y'' - y' + 2y = 0.$$

$$y''' - 2y'' - y' + 2y = 0.$$

$$(3) \quad y'' \quad y'$$

			•			
					,	
				•		
		•				
•					•	
				·		
				-		
					•	
	•					
		•				
			٠			
•						
	•					

Last Name Zhou

_, First Name_Eac

Student ID 005717972

3. (15 points) Solve the initial value problem of the form (i) $\mathbf{x}' = A\mathbf{x}$ (ii) $\mathbf{x}(0) = \mathbf{x}_0$, where A = $\begin{bmatrix} -1 & 3 \\ -3 & -1 \end{bmatrix} \text{ and } \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$

$$\int e^{t} \left(\begin{bmatrix} -3 & -1 \end{bmatrix} \right) = \begin{pmatrix} -1 & 3 \\ -2 & -1 - \lambda \end{pmatrix} = \begin{pmatrix} -1 - \lambda \end{pmatrix} \begin{pmatrix} -1 - \lambda \end{pmatrix} + 5$$

$$\left(\begin{bmatrix} +2\lambda + \lambda^{2} + 5 \\ \lambda^{2} + 2\lambda \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ \lambda^{2} + 2\lambda \end{bmatrix} + \frac{1}{2} + \frac{1}{2$$

$$\lambda = -1 + 3i$$
 $\left(-3i \quad 3\right) \left(x_{1}\right) = 0$

$$\begin{array}{c} 1 \\ -1 \\ 13 \\ 2 \\ 2 \end{array} = 0 \quad \begin{pmatrix} 1 \\ \tilde{1} \end{pmatrix}$$

$$\begin{aligned} & \left(\frac{2}{100} + \frac{1}{100} + \frac{1}{100}$$

			-	
		·		
·				
				•
				•
	••			
			,	•
·				
				•
		,		

Last Name_	Zhou	_, First	Name_FAC	
	005717978			

4. (10 points) Check whether the following differential form is exact.

$$(t^3 - t^2 \sin y - y)dy + (2t\cos y + 3t^2y)dt$$

> (

$$\frac{dP}{dt} = \frac{d}{dt} + 3 + t^2 \sin y - y = 3t^2 - 2t \sin y$$

				•		
			*			
•						
						•
				•		
	•					
					•	
		•				
				•		,
					•	
			÷			
-						

5. (20 points) This problem covers the "double real root-interesting case". We will find the general solution to the equation:

$$\mathbf{x}' = A\mathbf{x}$$
 where $A = \begin{bmatrix} -3 & 1 \\ -1 & -1 \end{bmatrix}$

- (a) Find the characteristic polynomial $p(\lambda)$ of A, then use this polynomial to determine the eigenvalues of A.
- (b) In this case, $\lambda := \lambda_1 = \lambda_2$ is an eigenvalue of multiplicity two. Since this is the interesting case, there is only one linearly independent eigenvector associated to λ . Find it.
- (c) Let \mathbf{v}_1 be the eigenvector found in step (b). Find a second vector \mathbf{v}_2 which is a solution to the matrix equation:

$$(A-\lambda I)\mathbf{v}_2 = \mathbf{v}_1.$$

(d) Write down the general solution:

$$\mathbf{x}(t) = C_1 e^{\lambda t} \mathbf{v}_1 + C_2 e^{\lambda t} (\mathbf{v}_2 + t \mathbf{v}_1)$$

(e) Solve the initial value problem:

(e) Solve the initial value problem:
$$x' = Ax$$

$$x(0) = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$$

$$4e + (A - Ax) = \begin{pmatrix} -3 - x \\ -1 - 1 - x \end{pmatrix} = (3 - x)(-1 - x) + 1 = 0$$

$$3 + x + 3x + x^{2} + 1$$

$$2^{2} + 4x + 4 = 0$$

$$(2 + 2)^{2} = 0$$

$$(2 + 2)^{2} = 0$$

$$(2 + 2)^{2} = 0$$

$$(2 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(4 + 2)^{2} = 0$$

$$(5 + 4)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(8 + 2)^{2} = 0$$

$$(8 + 2)^{2} = 0$$

$$(1 + 2)^{2} = 0$$

$$(2 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(4 + 2)^{2} = 0$$

$$(3 + 2)^{2} = 0$$

$$(4 + 2)^{2} = 0$$

$$(5 + 4)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{2} = 0$$

$$(7 + 2)^{$$

-				
	·			
				•

	First Name_	Enc.
Student ID 005777978		

6. (12 points) Find the general solution to the following homogeneous second-order linear differential equation:

$$y'' - 2y' + 5y = 0$$

Y(x)= 2-2x +5=0 122111-12 - 1221

[y(+)=c,etos(2t)+c,ets;n(2t)

			-						
		•				•			
						·			
									_
							•		
						•			
-									
				,					
									-
					•				
								•	
						-			

7. (15 points) Solve the following initial value problem.

$$y' - \frac{3}{t}y = t^2 + \frac{3}{t}, \quad y(-1) = 0.$$

$$\frac{t^{3}y' - 3t''y = t' + 3t''}{\int (t^{3}y') - \int t' + 3t''} dt$$

$$\int (t^{3}y') - \int t' + 3t'' dt$$

	·				
			•		
				•	
					i.
		•			
	•			•	
					•
		•			