

MATH 33B QUIZ 4 FRIDAY, MAY 3RD 2019

Your name	Alvin	Nguyen	Your ID	708124129	
			to the following statements. them if asked in the future	No justification needed for now. ((Howeve

- (1) If $y_1(x)$ and $y_2(x)$ are differentiable functions with Wronskian $W_{y_1,y_2}(x) = 0$ for all x in the interval I, then y_1 and y_2 are linearly dependent on the interval I. TRUE FALSE
- (2) If $y_1(x)$ and $y_2(x)$ are differentiable functions that are linearly dependent on the interval I, then their Wronskian $W_{y_1,y_2}(x) = 0$ for all $x \in I$. TRUE/FALSE
- (3) If $y_1(x)$ and $y_2(x)$ are both solutions to y'' + p(x)y' + q(x)y = 0 on interval (-1,1), then it is possible for their Wronskian to be $W(x) = xe^x$. TRUE FALSE
- $\bigvee_{(4) \text{ If } y_1(x) \text{ and } y_2(x) \text{ are both solutions to } y'' + p(x)y' + q(x)y = 0 \text{ on interval } I, \text{ and their Wronskian } W(x)$ is zero for some $x_0 \in I$, then y_1 and y_2 are linearly dependent on I.(TRUE) FALSE

Problem 2. Find a fundamental solution set to y'' + 2y' + 3y = 0.

(If you are done, do something creative on the back of the page.)