Math 33B Winter 2016 Midterm 02/08/16

TA name section number

Name (Print):

Time Limit: 50 Minutes

This exam contains 6 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem. Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit. Formula that you might or might not need:

• The differential form Pdx + Qdy has an integrating factor depending on one of the variables under the following conditions.

If $h = \frac{1}{Q}(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$ is a function of x only, then $\mu = e^{\int h(x)dx}$ is an integrating factor. If $g = \frac{1}{P}(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$ is a function of y only, then $\mu = e^{-\int g(x)dx}$ is an integrating factor.

- $e^{i\theta} = \cos\theta + i\sin\theta$
- $\cos(2\theta) = 2\cos^2\theta 1$

Do not write in the table to the right.

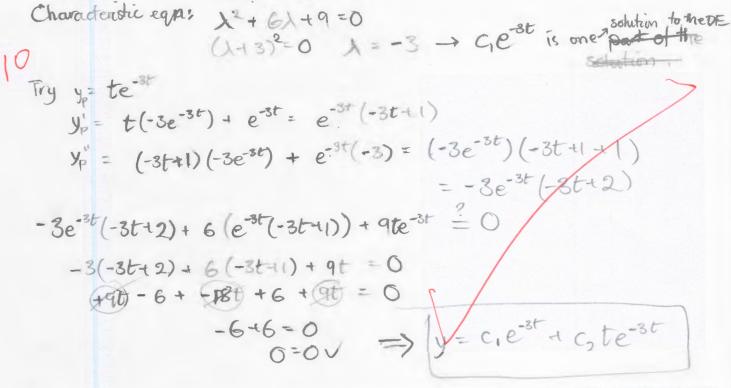
Problem	Points	Score
1	20	20
2	20	20
3	20	13
4	20	12
5	20	9
Total:	100	74

1. (20 points) Solve the equation $\frac{dy}{dx} = \frac{e^{-y}\cos^2 x}{1+y}$ with y(0) = 1. Justify your answer. $\frac{dy}{dx}(1+y) = \frac{e^{-y}\cos^2 x}{\cos^2 x}$ $\frac{dy}{dx}(1+y) = \frac{e^{-y}\cos^2 x}{\cos^2 x}$ $\frac{dy}{dx}(1+y) = \frac{e^{-y}\cos^2 x}{\cos^2 x}$ $\frac{e^{-y}(1+y)}{\cos^2 x} = \frac{e^{-y}\cos^2 x}{\cos^2 x}$ ey= = + sm(2x) + e ey (1-4y) - ey + c = x + sin(2x) ey (14y-1) = x + sin(2x) + C eyy= X+ sin(2x)+c y(6)=1 e'(1) = 0+0+C

20

02/08/16

3. (a) (10 points) Solve the equation y'' + 6y' + 9y = 0. Here y = y(t) is a function of t. Justify your answer.



(b) (10 points) Solve the equation $y'' + 6y' + 9y = e^{-3t} + t^2$. Justify your answer.

Solve homogy equity y'' + 6y' + 9y = 0 (a)

Solve homogy equity y''' + 6y' + 9y = 0 (a)

Principle of the equation y''' + 6y' + 9y = 0 (b)

Remember youthout to this equit. Guess $y_1 = \frac{1}{100} = \frac{1}{100}$

4

4. Let $f(t) = te^{2t}$ and $g(t) = t^2$ be two functions of t.

(a) (4 points) Compute the Wronskian of f and g.

$$W = f(t)g'(t) - f'(t)g(t)$$

$$te^{2t} (2t) - (e^{2t} + t(2e^{2t}))t^{2}$$

$$2t^{2}e^{2t} - (e^{2t} + 2te^{2t})t^{2}$$

$$2t^{2}e^{2t} - t^{2}e^{2t} - 2t^{3}e^{2t}$$

$$W = t^{2}e^{2t} - 2t^{3}e^{2t}$$

(b) (8 points) Show that f are g are linearly independent functions of t.

W(t) =0, (=) found g are linearly independent. From (a), W= t2e2+-2t3e2t

Also, To show f and g over lin, ind., assume they are lin. dependent then f = cg where c is a constant $te^{2t} = t^2c$ $c = \frac{te^{2t}}{t^2} = \frac{e^{2t}}{t}$, which is not a constant \Rightarrow f and g are not lin. dependent \Rightarrow f and g are lin. ind.

(c) (8 points) Show that there do not exist differentiable functions p(t) and q(t) such that $y(t) = c_1 f(t) + c_2 g(t)$ is the general solution to y'' + p(t)y' + q(t)y = 0, where c_1 and c_2 are arbitrary constants.

Suppose I such a p(t) and q(t) then $y(t) = c_1f(t) + c_2g(t)$ is a solu but if on that is the case, () then W = 0 $\forall t$ or $W \neq 0$ $\forall t$

By (a) W(0) = 0 and W(1) 70

=> contradiction => there does not exist such a p(t) and q(t)

AL

5. $\frac{dy}{dt} = 3y^{\frac{2}{3}}(y-1)(y^2-9)\cos y$

(a) (10 points) Find all the constant solutions that are (asymptotically) stable. Justify your answer.

Equilibrium solus:
$$(at \frac{dy}{dt} = 0) \rightarrow y = 0, 1, 3, -3, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{5\pi}{2}, \dots)$$

Thm: If $\frac{d}{dy}(3y^{2}s(y-1)(y^{2}-a)\cos y) < 0$ at an equilibrium point, then that point is asymptotically stable (from the book)

$$\frac{dy}{dt} = \left(3y^{\frac{5}{3}} - 3y^{\frac{2}{3}}\right) \left(y^2 - 9\right) \cos y = \left(3y^{\frac{1}{3}} - 27y^{\frac{5}{3}} - 3y^{\frac{2}{3}} + 27y^{\frac{2}{3}}\right) \cos y$$

 $= (11y^{\frac{8}{3}} - 45y^{\frac{2}{3}} - 8y^{\frac{1}{3}} + 18y^{\frac{1}{3}})\cos y - (3y^{\frac{1}{3}} - 3y^{\frac{1}{3}} - 27y^{\frac{1}{3}} + 27y^{\frac{1}{3}})\sin y$

4/10

(b) (10 points) Are the solutions to the above equation together with the initial condition y(0) = 0 unique? Justify your answer.

They are unique if and dy (dy) are both continuous

By (a), $\frac{d}{dy}(\frac{dy}{dt})$ contains $18y^{-18} = \frac{18}{37y}$, which is not continuous at $y = \frac{18}{37y}$

=) solution is not unique

5/10