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Recall that A corresponds to a linear transformation Ta.
(a) [2 pts] What are the domain and range of Tx?

1. Consider the matrix
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(b) [2 pts] Describe the image of T4 as a span of vector(s).
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(c) [4 pts] Describe the image of T4 geometrically. Is it a line? A plane? Draw it.
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2. [6 pts] Is the vector ? = | =3 | a linear combination of the. vectors V = (0) and W = (i)
2 1

= .
?.If so, write down the linear combination in the format b = c17 + cﬁv’. If not, explain why
not.
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3. [5 pts] Consider the following matrix:

, | 1 2 -11
| -1 0 1 1|+
- A=|0 0 0 0
3 4 -3 1w
1 1 -1 0/

Circle all of the following vectors which are members of ker(A).
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4. S -1 = -1 =
uppose you know that A (1 1) and B ( 3 2)-
( (a) [6 pts] Find (AB)~2.

(AB) "= g 'A"

G (b) [6pts] Find B.
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a (c) [2 pts) What was the rank of A7 (this should require no computations)
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(a) [2 pts] Write down the 2x2 matrix for rotation by an angle 6.

(b) [2 pts] Use the determinant to show that this matrix is invertible.

The detcrmnant ad-be
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S;n(c the d!‘,"@wﬁno'\k s not zero, Hee

Makfin 1y inv(rﬁ‘a)c .

(c) [3 pts] Explain geometrically what the inverse matrix should do, and write the inverse

matrix down.
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. [4 pts) Suppose you know that W is in ker(B), and you also know that BV =

1
2 |. Use this

— 3
information to find B(3W — 2V).
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7. True or false (circle your answer; no justification needed). In all of the problems below, Ais

an nxn square matrix.
(a) [2 pts) If A is the coefficient matrix for some linear system, and rank(A4) = n, then the
system has a unique solution.

(b) [2 pts] If A is the coefficient matrix for some linear system, and rank(A) < n, then the
system must have infinitely many solutions.

-

(c) [2 pts] If A is the coefficient matrix for some linear system, and the system had a unique so-

100 ---0
, 010 0
lution, then the RREF of A must be precisely the identity matrix I, = 001 0



