

- You have 50 minutes for this exam.
- Show all work, clearly and in order, if you want to get full credit. I reserve
 the right to take off points if I cannot see how you arrived at your answer
 (even if your final answer is correct).
- Circle or otherwise indicate your final answers. If you use the back of a page please indicate that you have work on the reverse side.
- You may not use books, notes, calculators, mobile phones, or any outside help during this exam. You may not collaborate with other students in any way during this exam.

Problem	Points	Score
1	10	10
2	10	10
3	10	WM 9
4	10	10
Total	40	39

a. (2 points) If the matrix A represents a rotation through $\pi/2$ and the matrix B a rotation through $\pi/4$, then A and B are similar.

F (15 1/2 -5m 5/2) = [152 -152]

[m 1/2 (15 1/2) = [10]

B=[152 -152]

Smile = > Symmetry, reflexiv. 4, prostorty b. (2 points) If A and B are similar, and A is invertible, then B must be

invertible as well. Alannotible

R=[10]

A and B are simular A 3 mu-thle [-23/01] = [-23/01] = [01/10]

A 3 mu-thle [-23/01] = [01/10]

c. (2 points) If A is an invertible matrix, then the equation $(A^{-1})^T = \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$ Sechn 5.3 last sommery 20/31 $(A^T)^{-1}$ must hold.

d. (2 points) For all 4×4 matrices A, det(4A) = 4 det A.

e. (2 points) If A is an $n \times n$ matrix such that $A = SBS^{-1}$, then $\det A^5 =$ $\det B^5$. If A=SBS-1, then Air similar to B

 $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 3 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 1 & 4 \end{bmatrix}$

B=[0][0]=[0]

-1890+1937 = 33

A=
$$\left\{ \begin{array}{c} T(\vec{x}) = C \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} C \\ 1 \end{array}$$

is a linear transformation expressed as the matrix A with respect to the standard basis $S = (\vec{e}_1, \vec{e}_2)$. Let $\mathcal{B} = (\vec{v}_1, \vec{v}_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ be another basis for \mathbb{R}^2 . If $S = \{\vec{v}_1, \vec{v}_2\} = \{\vec{v}_1, \vec{v}_2$

a. (7 points) Find the matrix $B = [T]_{\mathcal{B}}$, which expresses the linear transformation T as a matrix with respect to the basis \mathcal{B} .

$$AS = SB = A B = S^{-1}AS$$

$$S = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}, \quad det S = Y - 2 = 2 = 3 = 5^{-1} = \frac{1}{2} \begin{bmatrix} 4 & 1 & 2 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & (0) - 1(-2) & 2(1) - 1(3) \\ \frac{1}{2} & (0) + \frac{1}{2}(-1) - \frac{1}{2}(1) + \frac{1}{2}(3) = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & (1) - 1(1) & 2(1) - 1(1) \\ -1(1) + 1(1) & -1(2) + 1(1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$B = (S^{-1}A)S = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & (1) - 1(1) & 2(1) - 1(1) \\ -1(1) + 1(1) & -1(2) + 1(1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$= \frac{1}{1 - 0} = \frac{1 - 0}{1 - 0} = \frac{3}{1 - 0}$$

$$= \frac{1 - 0}{1 - 0} = \frac{3}{1 - 0}$$

$$= \frac{1 - 0}{1 - 0} = \frac{3}{1 - 0}$$

4. (10 points) Find the equation of the line which best fits) in the least squares y = 3x + 1 sense, the following points in the 'x, y'-plane: (-1, -1), (0,1), (1,4).

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$dd(A^{T}A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$ATb = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -(+1+4) \\ 1+4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$ATb = \begin{bmatrix} 1 & 1 & 1 \\ 1+4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$ATA = ATS$$

$$ATA =$$

$$\frac{1}{2} = \left(\frac{1}{A^T A} \right)^T \left(\frac{1}{A^T A$$