10

Mathematics 33A

Exam #1

Fall Quarter 2016

Last Name: <u>Jeong</u>

First Name: Yeon Tack

Student ID number: 804829836

## Instructions:

- You have 50 minutes for this exam.
- Show all work, clearly and in order, if you want to get full credit. I reserve
  the right to take off points if I cannot see how you arrived at your answer
  (even if your final answer is correct).
- Circle or otherwise indicate your final answers. If you use the back of a page please indicate that you have work on the reverse side.
- You may not use books, notes, calculators, mobile phones, or any outside help during this exam. You may not collaborate with other students in any way during this exam.

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 10     | 4     |
| 2       | 10     | 10    |
| 3       | 10     | 10    |
| 4       | 10     | 8     |
| Total   | 40     | 32    |



a. (2 points) If A and B are matrices such that C = AB exists and  $C^{-1}$  exists, then A and B are both invertible.



b. (2 points) If AB=0 then it is always true that either A=0 or B=0. Here 0 is the zero matrix. T

c. (2 points) If 
$$A$$
 is an  $n \times n$  matrix such that  $A^2 = A$ , and  $A$  is not the identity matrix  $I_n$ , then  $\ker(I_n - A) = \operatorname{im}(A)$ .



d. (2 points) There is a square matrix whose image equals its kernel.

e. (2 points) 
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ x \\ y-1 \end{pmatrix}$$
 is a linear transformation.

- 2. (10 points total) The following problem has parts a) and b):
  - a. (5 points) Find the reduced row-echelon form of

$$\begin{pmatrix}
1 & 6 & 7 & 1 & 0 & 0 \\
1 & 6 & 6 & 0 & 1 & 0 \\
1 & 5 & 4 & 0 & 0 & 1
\end{pmatrix} - r_{1}$$

$$\begin{bmatrix}
1 & 6 & 7 & 1 & 0 & 0 \\
1 & 5 & 4 & 0 & 0 & 1
\end{bmatrix} - r_{1}$$

$$\begin{bmatrix}
1 & 6 & 7 & 1 & 0 & 0 \\
0 & -1 & -1 & 1 & 0
\end{bmatrix} + 6r_{3}$$

$$\begin{bmatrix}
1 & 0 & -11 & -5 & 0 & 6 \\
0 & -1 & -3 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -11 & -5 & 0 & 6 \\
0 & -1 & -3 & -1 & 0 & 1
\end{bmatrix} - 1$$

$$\begin{bmatrix}
1 & 0 & -11 & -5 & 0 & 6 \\
0 & -1 & -3 & -1 & 0 & 1
\end{bmatrix} + 11r_{3}$$

$$\begin{bmatrix}
1 & 0 & -11 & -5 & 0 & 6 \\
0 & 1 & 3 & 1 & 0 & -1 \\
0 & 1 & 3 & 1 & 0 & -1
\end{bmatrix} - 3r_{3}$$

b. (5 points) Solve the equation  $A\vec{x} = \vec{b}$  for  $\vec{x}$  when

$$A = \begin{pmatrix} 6 & -11 & 6 \\ -2 & 3 & -1 \\ 1 & -1 & 0 \end{pmatrix} \text{ and } \vec{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$\begin{bmatrix} 6 & +1 & 6 & 1 \\ -2 & 3 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \end{bmatrix} + 2r_1$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ -2 & 3 & -1 & 1 & 1 \\ 6 & -11 & 6 & 1 & 1 \\ -6 & -1 & 6 & 1 & 1 \end{bmatrix} + 2r_1$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ -2 & 3 & -1 & 1 & 1 \\ 6 & -11 & 6 & 1 & 1 \\ -6 & -1 & 6 & 1 & 1 \end{bmatrix} + r_2$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ -1 & 1 & 3 & 1 \\ 0 & -5 & 6 & 1 & -5 \end{bmatrix} + 5r_2$$

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 0 & -5 & 6 & 1 & -5 \end{bmatrix} + 5r_2$$

3. (10 points total) Let  $V = span(v_1, v_2, v_3, v_4, v_5)$ , where

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 3 \\ 7 \\ 11 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}.$$

a. (2 points) Are the vectors whose span defines V linearly independent or linearly dependent? Explain why or why not.

These vectors are linearly dependent because there are redundant vectors such as  $\overrightarrow{V_2} = \overrightarrow{V_1} + \overrightarrow{V_3}$ .

b. (4 points) Find a basis for 
$$V$$
.

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
2 & 3 & 1 & 7 & 4 \\
3 & 4 & 1 & 11 & 5
\end{bmatrix} - 2r_1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 & 3 \\
0 & -1 & -1 & 1 & -2 \\
0 & -2 & -2 & 2 & -4
\end{bmatrix} = -1$$

c. (4 points) Find the kernel of the matrix  $A=[v_1\ v_2\ v_3\ v_4\ v_5].$ 

$$x_1 = x_3 - 5x_4 + x_5$$

$$X_2 = -X_3 + X_4 - 2X_5$$

$$\begin{array}{c}
\uparrow \text{ let } \times_3 = t \\
\times 4 = 2
\end{array}$$

$$\begin{array}{c}
\downarrow \text{ ker}(A) = \text{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -5 \\ 1 \end{bmatrix}, \begin{bmatrix} -7 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\$$

$$\begin{bmatrix} 1 & 0 & -1 & 5 & -1 & 0 \\ 0 & 1 & 1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} t - 5\Delta + u \\ -t + \Delta - 2u \\ t \\ \Delta \\ x \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} t - 5\Delta + u \\ -t + \Delta - 2u \\ t \\ \Delta \\ u \end{bmatrix}$$

- 4. (10 points total) The following problem has parts a) and b):
  - a. (6 points) Find the  $3 \times 3$  matrix which represents orthogonal

a. (6 points) Find the 3 x 3 matrix which replaces a projection onto the line spanned by 
$$v = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$
.

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{A} =$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{12+3^2+4^2}} \begin{bmatrix} \frac{1}{3} \\ 4 \end{bmatrix}$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{26}} \begin{bmatrix} \frac{1}{3} \\ 4 \end{bmatrix}$$

$$\operatorname{proj}_{L}(\overline{X}) = (\overline{X} \cdot \sqrt{26} \begin{bmatrix} 1 \\ 4 \end{bmatrix}) \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$\operatorname{proj}(\overrightarrow{e_2}) = \frac{3}{\sqrt{26}} \begin{bmatrix} \frac{1}{3} \\ 4 \end{bmatrix} = \frac{1}{\sqrt{26}} \begin{bmatrix} \frac{3}{9} \\ 12 \end{bmatrix}$$

$$\text{proj}(\overline{e_3}) = \frac{4}{\sqrt{26}} \left[ \frac{3}{4} \right] = \frac{1}{\sqrt{26}} \left[ \frac{4}{12} \right]$$

b. (4 points) Find the matrix which represents reflection across the plane in  $\mathbb{R}^3$  defined by the equation x+3y+4z=0.

$$\overrightarrow{V} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

ref 
$$(\vec{x}) = \vec{x} - 2 \cdot \sqrt{\frac{1}{26}} \begin{bmatrix} 1 & 3 & 4 \\ 3 & 9 & 12 \\ 4 & 12 & 16 \end{bmatrix} \vec{x}$$

$$= \left( \begin{array}{cccc} I_{3} & -\frac{2}{\sqrt{56}} \left[ \begin{array}{cccc} 1 & 3 & 4 \\ 3 & 9 & 12 \\ 4 & 12 & 16 \end{array} \right] \right) \overrightarrow{X}$$

