Mathematics 33A

Exam #1

Fall Quarter 2016

Last Name:_____

First Name:_____

Student ID number:_____

Instructions:

- You have 50 minutes for this exam.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers. If you use the back of a page please indicate that you have work on the reverse side.
- You may not use books, notes, calculators, mobile phones, or any outside help during this exam. You may not collaborate with other students in any way during this exam.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

- 1. (10 points total) Circle "T" if the statement is true and "F" if false. You need not show your work. No partial credit will be given.
 - a. (2 points) If A and B are matrices such that C = AB exists and C^{-1} exists, then A and B are both invertible.

T (F) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

b. (2 points) If AB = 0 then it is always true that either A = 0 or B = 0. Here 0 is the zero matrix.

T (F) If
$$A = [10] \& B = [1]$$
, then
AB = 0, but neither A nor B is zero

c. (2 points) If A is an $n \times n$ matrix such that $A^2 = A$, and A is not the identity matrix I_n , then ker $(I_n - A) = im(A)$.

T F
$$(I_n - A) A \vec{x} = (A - A^2) \vec{x} = (A - A) \vec{x} = \vec{0}$$

 $\Rightarrow A \vec{x} \in \ker(I_n - A)$. Hence $\operatorname{im}(A) \subset \ker(I_n - A)$
Now if $(I_n - A) \vec{x} = 0$, $\vec{x} = A \vec{x} \Rightarrow \ker(I_n - A) \subset \operatorname{im}(A)$
 $\therefore \ker(I_n - A) = \operatorname{im}(A)$

d. (2 points) There is a square matrix whose image equals its kernel.

2. (10 points total) The following problem has parts a) and b):

Note that the process of computing
ref(M) gives
$$A = \begin{pmatrix} 1 & 6 & 7 \\ 1 & 6 & 6 \\ 1 & 5 & 4 \end{pmatrix}^{-1} \iff A^{-1} = \begin{pmatrix} 1 & c & 7 \\ 1 & 5 & 4 \end{pmatrix}$$

b. (5 points) Solve the equation
$$A\vec{x} = \vec{b}$$
 for \vec{x} when

$$A = \begin{pmatrix} 6 & -11 & 6 \\ -2 & 3 & -1 \\ 1 & -1 & 0 \end{pmatrix} \text{ and } \vec{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$Tws \quad \vec{\chi} = \vec{A^{-1}} \vec{b} = \begin{pmatrix} 1 & \zeta \neq \\ 1 & \zeta \neq \\ 1 & \zeta \neq \\ 1 & 5 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 14 \\ 13 \\ 10 \end{pmatrix}$$

$$\vec{\chi} = \begin{pmatrix} 14 \\ 13 \\ 10 \end{pmatrix}$$

3. (10 points total) Let $V = span(v_1, v_2, v_3, v_4, v_5)$, where

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 3 \\ 7 \\ 11 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}.$$

a. (2 points) Are the vectors whose span defines *V* linearly independent or linearly dependent? Explain why or why not.

c. (4 points) Find the kernel of the matrix $A = [v_1 v_2 v_3 v_4 v_5]$.

By the computation in part b)

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & -1 & 5 & -1 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{X_1 - X_3 + 5X_4 - X_5} = 0$$

$$= X_1 = r - 5s + t \quad \text{and} \quad X_2 = -r + s - 2t \quad w.th$$

$$X_3 = r_3 \times 4 = S_1 \quad \text{and} \quad X_5 = t \quad , \quad SD$$

$$\operatorname{her} A = \left\{ \begin{bmatrix} r_1 - Ss + t \\ -r_1 + s_1 - 2t \\ s \end{bmatrix} \mid r_1, s, t \in \mathbb{R} \right\} = \left\{ r \begin{bmatrix} 1 \\ -1 \\ 0 \\ s \end{bmatrix} + s \begin{bmatrix} -5 \\ 1 \\ 0 \\ s \end{bmatrix} \right\} + t \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} \left(r_1, s, t \in \mathbb{R} \right)$$

$$= \operatorname{Span}\left(\left(\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \right) \begin{bmatrix} -5 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right) \left(\begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

4. (10 points total) The following problem has parts a) and b):

a. (6 points) Find the 3 × 3 matrix which represents orthogonal
projection onto the line spanned by
$$v = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$
. $\|V\| = \sqrt{1+9+16}$
 $Jet \quad V = s pan \quad \mathcal{N} = span \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$. $\|V\| = \sqrt{1+9+16}$
 $T := \operatorname{Proj}_{V} \quad \mathcal{X} = \begin{pmatrix} V \\ |V|| \\ |V|| \\ N \end{pmatrix} \frac{V}{||V||} = \frac{1}{26} (V \cdot X) \quad V$
Recall that the motrix of a linear transformation
has the form $(Te_{1,3}Te_{2,3}Te_{3})$, so
 $A = \begin{bmatrix} \frac{1}{26} (V \cdot e_{1}) \vee \frac{1}{26} (Y \cdot e_{2}) \vee \frac{1}{26} (V \cdot e_{3}) \vee \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 1 & 3 & 4 \\ 3 & 9 & 12 \\ 4 & 12 & 16 \end{bmatrix}$

b. (4 points) Find the matrix which represents reflection across the plane in \mathbb{R}^3 defined by the equation x + 3y + 4z=0.

Projection onto the plane
$$\pi$$
 is $(I - A) = B$ for A as
in port a). Reflection is related to projection
by $Ref_{\pi} = I - 2(I - Proj_{\pi})$
 $= 2Proj_{\pi} - I$
 $= 2B - I = 2(I - A) - I = 2I - 2A - I$
 $= I - 2A$
 $\therefore Ref_{\pi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{13} \begin{bmatrix} 1 & 3 & 4 \\ 3 & 4 & 12 \\ 4 & 12 & 16 \end{bmatrix}$