Math 33A: Midterm 2
2021 Spring

Please carefully read the following instructions:

[] The exam will begin on May 10th at 8AM PT. You will be given 24 hours to complete and submit
your works. The submission window will be closed on May 11th at 8AM.

[] No late submission will be considered. Make sure to spare enough time to complete and submit
your solutions. Make-ups for the exam are permitted only under exceptional circumstances, as
outlined in the UCLA student handbook.

[] The exam will be open book/open notes. You can use any resources you find in our textbook or
on our CCLE page.

] You must show your works to receive credit. Each of your solutions must clearly demonstrate
all the key logical steps towards the answer. Partial credit will be scarce for incomplete solutions or
answers without justification.

[ ] You may use technology to write up your solutions, such as word processors or note-taking appli-
cations. You may also write your solutions on blank papers. If you choose to do so, please leave
enough space between questions.

[ ] A Gradescope link for submitting your work will be provided on the CCLE course webpage.

[] If you have a question about the phrasing of the questions or about the exam logistics, you may
email me (sos440@math.ucla.edu). Please make sure to begin the subject line of your email with
the prefix ‘Math 33A’; otherwise | will not reply to the email.

[ ] You must sign the code of conduct. Any deviation from the rules will be considered as cheating.
The university is also well-aware of “academic educational sites”, and their use in connection with
the exam is an Honor Code violation that is taken very seriously in UCLA.

Please read and sign the following honor code:

“I certify, on my honor, that | have not asked for or received assistance of any kind from
any other person while working on the exam and that | have not used any non-permitted
materials or technologies during the period of this evaluation."

Name:

UID:

Signatu




Q1. (8 points) Consider the vectors
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where k is a real number.
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(2) For what value(s) of & do the vectors @1, 7, 33, 74 fail to form a basis of R
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(b) For each value of k found in part (a), find a non- tnvnal linear relation among 1, U, U3, U4.
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Q2. (12 points) Let A be the 4 x 4 matrix given by 5
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(b) Find a basis of the kernel of A.
By inspection: column % if 4 redundant vector because
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(c) Let @, s, v3, U4 be the column vectors of A in the order as they appear. Now we consider a vector
75 in R* and form a 4 x 5 matrix B by appending 75 to the right of A4, i.e.,

A
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Find all possible values of @5 such that the image of B is a 3-dimensional subspace of R4.
(Hint: Essentially no computation is needed in this part.) y
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Q3. (12 points) Let @y, 7, U3 be the vectors in R3 given by
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You are given that these three vectors form a basis of R3.

(a) Perform the Gram—Schmidt process on the list of vectors (1, U2, ¥3). MakeZ sure to provide all the
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(b) Let B = (d,4,3) be the orthonormal basis that is obtained as the outcome of the Gram—
Schmidt process in part (a). Find [t3]s, the coordinate vector of @3 with respect to B.
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Q4. (8 points) Consider the 3 x 3 matrix A and the vector beR3 given by
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(a) Find all the least-squares solutions Z* of the system AZ = b.
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(b) Use the answer in part (a) to find the minimum distance between b and any vector ¥ in im(A).
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Q5. (9 points) For each of the following problems, provide an example with the given properties,

and briefly explain why your choice of example works. If no such example exists, then prove why it is
impossible to find such one.

(a) An example of a 3 x 3 matrix A such that both im(A) and ker(A) are planes in R3.
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(c) An example of a 3 x 3 matrix P which is not a scalar multiple of I3 and satisfies P2=P.
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Q6. (9 points) Prove each of the following statements.
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(b) If Q is a 3 x 3 orthogonal matrix and iy, g, i3 form an orthonormal basis of R3, then Qu1, Qua,
Qi3 also form an orthonormal basis of R3.
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(c) If @y, ¥, and @3 are vectors in R202!, and if there exists a linear transformation T : R?0?! — R3

such that
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