Math 33A: Final
2021 Spring

Please carefully read the following instructions:

[[] The exam will begin on June 6th at 8AM PT. You will be given 24 hours to complete and submit
your works. The submission window will be closed on June 7th at 8AM.

[] No late submission will be considered. Make sure to spare enough time to complete and submit

your solutions. Make-ups for the exam are permitted only under exceptional circumstances, as
outlined in the UCLA student handbook.

[1 The exam will be open book/open notes. You can use any resources you find in our textbook or
on our CCLE page. You may use technology to compute matrix multiplication and matrix inversion,
unless specified otherwise.

[] You must show your works to receive credit. Each of your solutions must clearly demonstrate
all the key logical steps towards the answer. Partial credit will be scarce for incomplete solutions or
answers without justification.

[] You may use technology to write up your solutions, such as word processors or note-taking appli-
cations. You may also write your solutions on blank papers. If you choose to do so, please leave
enough space between questions.

[T1 A Gradescope link for submitting your work will be provided on the CCLE course webpage.

{1 If you have a question about the phrasing of the questions or about the exam logistics, you may
email me (sos440@math.ucla.edu). Please make sure to begin the subject line of your email with
the prefix ‘Math 33A’; otherwise | will not reply to the email.

[] You must sign the code of conduct. Any deviation from the rules will be considered as cheating.
The university is well-aware of “academic educational sites”, and their use in connection with the
exam is an Honor Code violation that is taken very seriously in UCLA.

Please read and sign the following honor code:

“I certify, on my honor, that | have not asked for or received assistance of any kind from
any other person while working on the exam and that | have not used any non-permitted
materials or technologies during the period of this evaluation.”

Name;

UID:

Signatur




Q1. (9 points) This question consists of several, unrelated sub-questions regarding determinant. Answer
each of the sub-questions and provide a brief explanation.

(a) What is the determinant of the matrix A given by
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(b) Let A be the matrix of the orthogonal projection onto the plane 2z — 3y + z = 0 in R3. Find the
determinant of A.
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(c) Suppose we are given that [
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Q2. (9 points) Consider the matrix

(a) Compute the characteristic polynomial

fa(A) = det(A — AI3),

and then find the eigenvalues for A. In doing so, do not use technology and briefly explain what

method or result you are using to compute f4(\).
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(b) For each eigenvalue A of A, find the eigenspace Ej.
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(c) Determine whether A is diagonalizable or not, and briefly explain why. Also, if A is diagonalizable,
then find an invertible matrix S and a diagonal matrix D such that S™*AS = D holds.
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Q3. (9 points) Consider the transition matrix A and the distribution vector Zy given by

05 0.2 04 1/3
A=104 02 04 and To= [1/3].
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(a) Find an eigenvector ) of A with associated eigenvalue 1.
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(b) Find a closed-form expression for
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(c) Find tligloA Zy.
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Q4. (9 points) Consider the matrix

(a) Find the smgular values 01, 09, 03 of A.
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(b) For each eigenvalue X of AT A, find an orthonormal basis of the associated eigenspace Ej.
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(c) Find a singular value decomposition (SVD) for A. JIAr
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Q5. (9 points) For each of the following problems, provide an example with the given properties, and
briefly explain why your choice of example works. If no such example exists, then explain why it is
impossible to find such one.
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(c) A 3 x 3 matrix A for which the eigenspaces satisfy
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Q6. (9 points) Determine whether each of the following statements is TRUE (meaning, “always true")
or FALSE (meaning, “not always true”) and give a justification.

(a) If an n x n matrix A is diagonalizable, then AT is also diagonalizable.
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(c) If Ais an n x n matrix and all of its eigenvalues A1, g, ..., A, are real numbers, then the singular
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