33A - Midterm 1

Name:

UID:

Question 1

- (a) [3 points] Define the span of a set of vectors.
- (**b**) [4 points] Explain whether or not the vector $\vec{x} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ is in the span of the vectors $\vec{y} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ and $\vec{z} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$.
- (c) [3 points] Suppose that \vec{v}_1 is in the span of \vec{v}_2 , \vec{v}_3 . Does this imply that \vec{v}_3 is in the span of \vec{v}_1 , \vec{v}_2 ?

••••

2

Question 2

- (a) [3 points] Explain geometrically what it means to project a vector in 2D onto a line L.
- (**b**) [4 points] Find the projection of the vector $\vec{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ onto the line $L = span \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- (c) [3 points] Use the projected vector you found in (b) to find the reflection of \vec{x} in the line L. (An incorrect answer from (b) will not cost points here.)

• • • • • • • • • •

4

Question 3

- (a) [2 points] Define the kernel of a matrix.
- (b) [3 points] Show that for any $m \times n$ matrix A, saying that the ker(A) = $\{\vec{0}\}$ is the same as saying that the columns of A are independent.
- (c) [3 points] Show that if $\vec{x}, \vec{y} \in \ker(A)$, and $\vec{z} \in \operatorname{span}(\vec{x}, \vec{y})$, then $\vec{z} \in \ker(A)$.
- (d) [2 points] Do elementary row operations preserve the kernel of a matrix?

••••

6

	Score
1	
2	
3	
Σ	