Question 1

A subspace *V* of \mathbb{R}^n is called a *hyperplane* if the vectors $\vec{x} \in V$ are defined by an equation: $a_1x_1 + a_2x_2 = 0$, where at least one of the coefficients a_2 is popper. $a_2 x_2 + \ldots + a_n x_n = 0$, where at least one of the coefficients a_i is nonzero.

- (a) [3 points] How many of the variables x_i are free? What is the dimension of a hyperplane in \mathbb{R}^n ?
- (**b**) [4 points] Explain what a hyperplane in \mathbb{R}^2 looks like, and give a basis for the hyperplane in \mathbb{R}^2 given by the equation $x_1 + 2x_2 = 0$.
- (c) *[3 points]* Find an equation like the one given above for the plane spanned by the vectors $\overline{}$ 1 $\begin{array}{c} \hline \end{array}$

.

and
$$
\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
$$
 in \mathbb{R}^3 .

Answer

- (a) If all the $a_i = 0$, then the equation would just say $0 = 0$ and all the variables are free. Since this is not the case, in order for the equation $a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0$ to hold, we pick one variable x_i with a nonzero a_i . Then all the other variables are free, and they determine the value of x_i . Since there are $n-1$ free variables, we can write our vectors in *V* as linear combinations of exactly $n - 1$ vectors, so *V* has $n - 1$ dimensions.
- (**b**) The equation $x_1 + 2x_2 = 0$ gives us $x_2 = s$ and $x_1 = -2s$, so the vectors look like $s \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ 1 ! . We have a 1-dimensional subspace (a line) with basis $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ 1 ! .
- (c) All vectors in this space can be written as $\vec{x} = s$ 1 $\overline{}$ 1 0 λ $\begin{array}{c} \hline \end{array}$ + *t* 1 $\overline{}$ 0 $\boldsymbol{0}$ λ $\begin{array}{c} \hline \end{array}$ = \int *s* + *t* $\overline{}$ *t* 0 ſ $\begin{array}{c} \hline \end{array}$. This means that x_1 and x_2

are free, and $x_3 = 0$: that's our equation. (Those two vectors clearly span the horizontal plane in 3D where the third entry of each vector is 0.)

.

1

Í

 $\boldsymbol{0}$

ĺ

1

Í

3

Question 2

- (a) *[3 points]* Define the kernel and image of a matrix *A*.
- (b) *[4 points]* Verify that both the kernel and image of *A* are closed under addition and scalar multiplication.

.

(c) [3 *points]* Find a 3×3 matrix A such that both the kernel and the image of A contain [2]. $\overline{}$ $\begin{array}{c} \hline \end{array}$

Answer

- (a) The kernel of a matrix *A* is the set of all vectors \vec{x} in the domain of *A* such that $A\vec{x} = \vec{0}$. The image of *A* is the set of all vectors \vec{y} in the target spaces of *A* such that there exists an \vec{x} in the domain for which $A\vec{x} = \vec{y}$.
- (b) For the kernel:

If \vec{x}_1, \vec{x}_2 ∈ ker(*A*), then $A(\vec{x}_1 + \vec{x}_2) = A\vec{x}_1 + A\vec{x}_2 = \vec{0}$. Therefore $\vec{x}_1 + \vec{x}_2$ is in the kernel: closed under addition. If $\vec{x} \in \text{ker}(A)$, then $A(k\vec{x}) = kA\vec{x} = k\vec{0} = \vec{0}$. Therefore, $k\vec{x}$ is in the kernel, for any $k \in \mathbb{R}$: closed under scalar multiplication.

For the image:

If $\vec{y}_1, \vec{y}_2 \in \text{im}(A)$, then there exist \vec{x}_1, \vec{x}_2 (not necessarily the same vectors as earlier) such that $A\vec{x}_1 = \vec{y}_1$ and $A\vec{x}_2 = \vec{y}_2$. Then $A(\vec{x}_1 + \vec{x}_2) = A\vec{x}_1 + A\vec{x}_2 = \vec{y}_1 + \vec{y}_2$. Therefore $\vec{y}_1 + \vec{y}_2 \in \vec{y}_2$ im(*A*): closed under addition. If \vec{y} ∈ im(*A*), then there exists some \vec{x} in the domain of *A* for which $A\vec{x} = \vec{y}$. Then $Ak\vec{x} = kA\vec{x} = k\vec{y}$, so $k\vec{y} \in \text{im}(A)$, for any $k \in \mathbb{R}$: closed under scalar multiplication.

(c) *A* for 1 $\overline{}$ 2 3 λ $\begin{array}{c} \hline \end{array}$ to be in the kernel, we must have that each row of *A* satisfies $x_1 + 2x_2 + 3x_3 = 0$. This

means that for each row we have two free variables. For 1 $\overline{}$ 2 3 Í $\begin{array}{c} \hline \end{array}$ to be in the image, we can just

add it in as one of the columns. Since we have two free variables per row we can add it in as a column twice, and then find the third entries for each row:

$$
A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 3 & 3 & -3 \end{pmatrix}
$$

.

Question 3

- (a) *[3 points]* Define what it means for a matrix to be invertible.
- **(b)** *[4 points]* Find the projection of the vector $\vec{x} =$ $\sqrt{1}$ 0 ! onto the line *L* spanned by \vec{w} = $\sqrt{1}$ 1 ! . Explain why this transformation is not invertible.
- (c) *[3 points]* For which values of *x* is the following matrix invertible? First answer this question using the determinant of *A*, and then give a geometrical interpretation.

.

$$
A = \begin{pmatrix} 1 & a \\ -a & 1 \end{pmatrix}
$$

Answer

- (a) A square matrix *A* is invertible if there exists a matrix A^{-1} such that $AA^{-1} = I_n$. (There are many other possible definitions in terms of kernels, ranks, determinants, etc...)
- **(b)** We first find the unit vector in the direction on *L*. We have $\vec{u} = \frac{\vec{w}}{\|\vec{w}\|} = \frac{1}{\sqrt{2}}$ $\sqrt{1}$ 1 ! . Now $proj_L \vec{x} =$

 $(\vec{x} \cdot \vec{u})\vec{u} = \frac{1}{2}$ 2 $\sqrt{1}$ 1 ! . (This answer is also easy to deduce from a sketch.) Alternatively, you can use the matrix for the 2-D projection in terms of u_1 and u_2 that we defined in the lectures.

(c) We have that $det(A) = 1 + a^2 > 0$ for any $a \in \mathbb{R}$, so *A* is always invertible. We know that a matrix of the form matrix of the form

$$
A = \begin{pmatrix} b & a \\ -a & b \end{pmatrix}
$$

represents a rotation followed by a scaling. Both rotations and scalings are clearly invertible: a scaling by a factor *k* can be inverted by a scaling by $1/k$, and a rotation over an angle θ can be inverted by a rotation over an angle [−]θ. Therefore, it is clear that *^A* should indeed be an invertible matrix.

.