MATH 33A EXAM 2

Name:

November 13, 2015

SID:

Name of TA:

Discussion section:

I have read and understood the Student Honor Code, and this exam reflects my unwavering commitment to the principles of academic integrity and honesty expressed therein.

~.	
Signature:	
овримине.	
~ 15110000100	

Each part of each problem is worth the number of points stated in parentheses. You must show all work to get any partial credit, which will be awarded for certain progress in a problem only if no substantially false statements have been written.

Please write your answers to problems A-E in the box below.

JOICIIIS 11	bolems A-L in the box below.		
Problem	Answer	Points	
1A		Market Street, or other	
	number		
1B			
	subspace	4	
1C	+	6)	
	True		
1D	_	0.	
	5		
1E	T1/4	7	
	/ 4		
1F	A-I	(3	
	A'	0	

This side for instructor's use only:

Problem	Points	•
2a	/	71
21	6)0
2b	6	
3a	6	10
3b	2	18
3c	0	/
4	0	0
	111	

There is no partial credit on this problem.

- (A) (1 point) The rank of an $m \times n$ matrix is what type of thing? { number, vector, subspace, matrix, linear transformation }
- (1 point) The span of the columns of an $m \times n$ matrix is what type of thing? { number, vector, subspace, matrix, linear transformation }
- (C) (2 points) Suppose A is an $\underline{n \times n}$ matrix such that $\langle \vec{x}, \vec{y} \rangle = 0$ implies $\langle A\vec{x}, A\vec{y} \rangle = 0$. Then A is an orthogonal matrix. { True, False }
- _(D) (2 points) Let A be a 6×7 matrix whose image is two dimensional. What is the dimension of $\operatorname{im}(A^T)^{\perp 2}$? $\{0,1,2,3,4(5)6,7\}$ $\lim_{n \to \infty} (\operatorname{im} A) + \dim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \dim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \dim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \dim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty} (\operatorname{im} A) = 0$ $\lim_{n \to \infty} (\operatorname{im} A) + \lim_{n \to \infty$
- (F) (2 points) Suppose A and B are $n \times n$ symmetric invertible matrices. Which of the following is not necessarily symmetric? $\{A^T, A^2, A^{-1}, A + B, A - B^T, AB\}$

Problem 2. (10 points) You must show all work to get partial credit. You must simplify your work to receive full credit.

(b) (2 points) Compute the matrix of the projection onto $V = \operatorname{im}(M)$.

0

Problem 3. (10 points) You must show all work to get partial credit. You must simplify your work to receive full credit.

Consider
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$.

(a) (6 points) Find a vector \vec{x}^* which minimizes $||A\vec{x}^* - \vec{b}||$.

$$A^{T}A\vec{x}^{*} = A^{T}\vec{b}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \vec{x}^{*} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 &$$

(b) (2 points) Verify that $A\vec{x}^* - \vec{b}$ is orthogonal to im(A).

(2 points) Verify that
$$A\vec{x}^* - \vec{b}$$
 is orthogonal to $im(A)$.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

$$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

$$A\vec{x}^* - \vec{b} \text{ is orthogonal to } im(A)$$

(c) $\sqrt{2}$ points) Compute the matrix of the projection onto im(A).

Problem 4. (10 points) Let A be an $m \times n$ matrix and $\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4} \in \mathbb{R}^n$. Suppose that

 $A\vec{v}_1, A\vec{v}_2, A\vec{v}_3, A\vec{v}_4$ are linearly independent. Show that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are linearly independent. (et S= [V, V2 J3 V4]

let

T(x) = Ax

since Av3 is in ind of Av, ad Av2

only G = G2=0 solves $T(\vec{v}_3) = A\vec{v}_3 = C_1(A\vec{v}_1) + C_2(A\vec{v}_2)$ $= [C_1 C_2][T(\vec{v}_1)]$ $T(\vec{v}_2)$

if
$$A\vec{v}_1 \cdot A\vec{v}_2 = 0$$
 (et $\vec{v}_1 = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_n \end{bmatrix}$ $\vec{v}_2 = \begin{bmatrix} \vec{u}_1 \\ \vec{u}_N \end{bmatrix}$

$$A\overrightarrow{V}_{1} = \begin{bmatrix} A_{11} & \cdots & A_{1N} \\ A_{N1} & \cdots & A_{NN} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{N} \end{bmatrix} = \begin{bmatrix} A_{11}V_{1} + A_{12}V_{2} + \cdots & A_{1N}V_{N} \\ A_{21}V_{1} + \cdots + A_{2N}V_{N} \end{bmatrix}$$

$$A \xrightarrow{V_{1}} = \begin{bmatrix} A_{11}V_{1} + A_{12}V_{2} + \cdots & A_{1N}V_{N} \\ A_{21}V_{1} + \cdots + A_{2N}V_{N} \end{bmatrix}$$

then

$$A_{v_1} \cdot A_{v_2} = \left[(A_{11} v_1 + ... + A_{1N} v_N)_{1-1} + (A_{11} u_1 + ... + A_{1N} u_N) \right]$$

$$\left[(A_{M1} v_1 + ... + A_{MN}) + (A_{M1} u_1 + ... + A_{MN} u_N) \right]$$

$$\left[v_1 + ... + v_1 + ... + v_2 + ... + v_2 + ... + v_3 + ... + v_4 + ... +$$