Please write your answers to problems A-E in the box below.

Problem	Answer	Points
1A	TRUE	0
1B	FALSE	2
1C	FALSE	2
1D	FALSE	2
1E	FALSE	0

6

There is no partial credit on this problem.

 $\overline{\text{RUE}}$ (A) (2 points) Suppose A is $m \times n$. The vector $A\vec{x}$ for $\vec{x} \in \mathbb{R}^n$ is a linear combination of the rows of A.

Anxi + Anxi + Anxi + Anxi

Anx

FALSE (C) (2 points) Suppose A is $m \times n$, and $A\vec{x} = \vec{b}$ has a unique solution for some vector $\vec{b} \in \mathbb{R}^m$. Then n > m.

FAUF (D) (2 points) Suppose A is $m \times n$, with n > m. Then $\ker(A) = \{0\}$.

FALSE (E) (2 points) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, then $\ker(T) = \{\vec{0}\}.$

Problem 2. (10 points) You must show all work to get partial credit.

(a) (5 points) Use Gaussian elimination to compute the inverse of
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$
.

$$\begin{pmatrix} A & T_k \end{pmatrix} = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 3 & 5 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \xrightarrow{R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

(b) (5 points) Find a 2×3 matrix A and a 3×2 matrix B such that $AB = I_2$, but $BA \neq I_3$. Hint: You can do this only using 0's and 1's for the entries of A and B.

$$A = \begin{bmatrix} A_1, & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \qquad B = \begin{bmatrix} B_{12} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix}$$

Problem 3. (10 points) You must show all work to get partial credit.

Consider the 4 × 5 matrix
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
.

(a) (5 points) Find a set of vectors in \mathbb{R}^5 which spans $\ker(A)$.

AZ=0
$$\Rightarrow k_1 = -2s - 3t$$
, $k_3 = -2t$, $k_4 = -t$
 $\Rightarrow k_1 = -2s - 3t$, $k_5 = -2t$, $k_6 = -t$
 $\Rightarrow k_1 = -2s - 3t$, $k_6 = -2t$, $k_6 = -t$
 $\Rightarrow k_6 = -2s - 3t$, $k_6 = -2t$, $k_6 = -t$
 $\Rightarrow k_6 = -2s - 3t$, $k_6 = -2t$, $k_6 = -t$
 $\Rightarrow k_6 = -2s - 3t$, $k_6 = -2t$, $k_6 = -t$
 $\Rightarrow k_6 = -2s - 3t$, $k_6 = -2t$, $k_6 = -t$

(b) (3 points) Find a set of vectors in \mathbb{R}^4 which spans im(A).

(c) (2 points) If you answered both part (a) and part (b) correctly, you get the final 2 points for this question if the number of vectors you found in part (a) plus the number of vectors you found in part (b) equals 5.

Problem 4. (10 points) Suppose we have j vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_j} \in \mathbb{R}^n$ and k vectors $\vec{w_1}, \vec{w_2}, \dots, \vec{w_k} \in \text{span}\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_j}\}$. Prove that any linear combination of $\vec{w_1}, \vec{w_2}, \dots, \vec{w_k}$ is also a linear combination of $\vec{v_1}, \vec{v_2}, \dots, \vec{v_j}$.

Note: You are being asked to prove $V = \text{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_j\}$ is closed under taking linear combinations. You may not assume V is a subspace in this question, since that would beg the question!

Because wi, wir, wike Span 30, vo, joj3, Wi = Civi+Cov2+ + Cjvj where Islah.

(The it wester is a livear combination of they vectors). Wi = \$\frac{1}{n=1} \capprox \text{crvn} \].

A livear combination of wi, wir, ..., wik can be written as

\[
\times diwi = \frac{\times}{\times \times \

Scalar say cm we have a linear comb of Dirty of

 $\overrightarrow{w}_{1} = C_{11}\overrightarrow{V}_{1} + \cdots + C_{1j}\overrightarrow{V}_{j}$ $\overrightarrow{w}_{2} = C_{21}\overrightarrow{V}_{1} + \cdots + C_{2j}\overrightarrow{V}_{j}$ $\overrightarrow{w}_{K} = C_{K1}\overrightarrow{V}_{1} + \cdots + C_{Kj}\overrightarrow{V}_{j}$

diwithdive= $(C_1 \vec{v}_1 + (C_1 \vec{v}_1) + \cdots + (C_1 \vec{v}_1) + \cdots + (C_1 \vec{v}_1) + C_2 \vec{v}_1 + \cdots + (C_1 \vec{v}_1) + \cdots + (C_1 \vec{v}_$

Also if any wi vector is excluded, we can wnite this

AS C; =0 and C1+C2+...+cfor +Ck is still a second

2 the end result 1 5\$17