Problem 1 (10 points in total)

Consider the map $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T\left(\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}\right) = \begin{bmatrix}v_1\\v_2\end{bmatrix}$$
 for any vector $\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}$ in \mathbb{R}^3 .

1. (2 points) Write down the definition of linear transformation.

Solution:

A map
$$T$$
 is a linear transformation

if and only if,

 $T(K\vec{\sigma}) = KT(\vec{\sigma})$ (for an arbitrary constant $K \in \mathbb{R}$)

 $T(\vec{\sigma} + \vec{\sigma}) = T(\vec{\sigma}) + T(\vec{\sigma})$ (for all vectors $\vec{\sigma}$ and $\vec{\sigma} \in \mathbb{R}_m$)

2. (2 points) Show that the map T is a linear transformation.

Solution:
$$T(k\vec{v}) = T(k\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}) = T(\begin{bmatrix} kv_1 \\ kv_2 \end{bmatrix}) = \begin{bmatrix} kv_1 \\ kv_2 \end{bmatrix} = k\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$KT(\vec{v}) = K\begin{bmatrix} v_2 \\ v_2 \end{bmatrix}$$

$$Thus, KT(\vec{v}) = T(K\vec{v})$$

$$T(\vec{v} + \vec{w}) = T(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} w_2 \\ w_3 \end{bmatrix}) = T(\begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$$

$$T(\vec{v}) + T(\vec{w}) = T(\begin{bmatrix} v_1 \\ v_3 \end{bmatrix}) + T(\begin{bmatrix} w_2 \\ v_3 \end{bmatrix}) = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$$

$$Thus, T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$$

3. (3 points) Write down the matrix A such that T(v) = Av for all vectors v in \mathbb{R}^3 .

Solution: A is a 2×3 matrix. $A = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$, $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $T(\vec{v}) = A\vec{v} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \vec{v}$

4. (2 points) Compute the rank of A.

Solution:

The rank of A is 2.

5. (1 point) Let B be any matrix of the same size as A. Can B have rank larger than A?

Solution:

No, because rank(B) < n, where
n is the number of rows in
A and B.
Since n=2, rank(B) < 2
Since 2=rank(A), rank(B) < rank(A)

Problem 2 (10 points in total)

1. (6 points) Give an example of three linear transformations $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ and $S \colon \mathbb{R}^2 \to \mathbb{R}^2$ and $U \colon \mathbb{R}^2 \to \mathbb{R}^2$ such that the matrices that represent T and S commute, while the matrices that represent S and U do not commute. (Recall: we say that an $n \times m$ matrix A represents a linear transformation $T \colon \mathbb{R}^m \to \mathbb{R}^n$ if T(v) = Av for all $v \in \mathbb{R}^m$.)

Solution:

$$T(\vec{v}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v}$$

$$S(\vec{v}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v}$$

$$T(S(\vec{v})) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v}$$

$$S(T(\vec{v})) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v}$$

$$S(U(\vec{v})) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v}$$

$$U(S(\vec{v})) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{v}$$

$$Thus S(U(\vec{v})) \neq U(S(\vec{v}))$$

2. (4 points in total) Let
$$A = \begin{bmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

• (2 points) Give a geometric interpretation of the transformations represented by A and B. (In words, or using a drawing.)

52

Solution:
$$(\times 0.5)^2 + (-\times 0.5)^2 = 1$$

$$0.25 \times^2 + 0.25 \times^2 = 1$$

$$0.5 \times^2 = 2$$

$$0.5 \times^2 = 2$$

$$0.5 \times^2 = 2$$

$$0.6 \times 2 = 2$$

$$0.6 \times 2 = 2$$

$$0.7 \times$$

• (2 points) Draw the images of the standard basis unit vectors of \mathbb{R}^2 under the linear transformation represented by AB.

Problem 3 (10 points in total)

Consider the following system of three linear equations in the variables x_1, x_2, x_3, x_4 :

$$2x_2 + x_4 = 1$$
$$x_1 + x_3 = 1$$
$$x_4 = 1$$

1. (4 points) Solve the system using the Gauss-Jordan elimination algorithm.

Solution:

$$\begin{bmatrix}
0 & 2 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0.5 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0.5 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0.5 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 &$$

2. (3 points) Let b_1, b_2, b_3 be arbitrary real numbers. How many solutions does the system

$$2x_2 + x_4 = b_1$$
$$x_1 + x_3 = b_2$$
$$x_4 = b_3$$

have?

3. (3 points) Let A be any $n \times n$ matrix. Is there always a sequence of elementary row operations that transforms the identity matrix I_n into A? You should motivate your answer.

Problem 4 (10 points in total)

1. (2 points) Write down the definition of invertible matrix.

Solution: Matrix NXN matrix A is
invertible if and only if a unique
if the transformation T (T)=W

It's RREF is In, given the
matrix is nxn.

2. (2 points) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that the matrix that represents T is not invertible.

Solution:

3. (4 points) Consider the following matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

Is A invertible? If yes, compute its inverse.

4. (2 points) Let A be an $n \times n$ matrix. Assume that A is not invertible. How many solutions does the system Ax = b have?

Solution: There is must be
$$0 \quad [0 \quad 0 \quad 0 \mid K] \quad row, \quad so \quad infinite$$
 if $K=0$ of none if $K\neq 0$

Problem 5 (10 points total; 2 points each)

Answer the following questions with true or false.

1. Any 4×3 matrix with rank equal to 3 is invertible.

false

2. Let θ and η be any two angles with $\theta \neq \eta$. Let $T_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the counterclockwise rotation in \mathbb{R}^2 through θ , and $T_{\eta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ the counterclockwise rotation in \mathbb{R}^2 through η . Then $T_{\eta} \circ T_{\theta} = T_{\theta} \circ T_{\eta}$.

True

3. There exists a real number a for which the following matrix is in reduced row echelon form:

$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & a & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

False

- 4. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\right) = \begin{bmatrix} v_1^2 + 2v_1 + 1 \\ v_1 + v_2 \end{bmatrix}$ is linear.
- 5. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is invertible if and only if for every $v \in \mathbb{R}^n$ there exists a unique $w \in \mathbb{R}^n$ such that T(v) = w.

True

Use this sheet of paper if you need additional space.

Use this sheet of paper if you need additional space.