Problem 1 (10 points in total)
Consider the map T: R® — R? defined by
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1. (2 points) Write down the definition of linear transformation.
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2. (2 points) Show that the map T is a linear transformation.

Solution:
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3. (3 points) Write down the matrix A such that T'(v) = Awv for all vectors v in R3.

Solution: A TN 7 x 3 oA o

A;V‘ [-r(é.) T(e,) T‘Cffa)} )
o= 9]
A I A A I

4. (2 points) Compute the rank of A.

Solution:

Tre cank of A s 2.

5. (1 point) Let B be any matrix of the same size as A. Can B have rank larger than

A?
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Problem 2 (10 points in total)

1. (6 points) Give an example of three linear transformations 7: R? — R2 and S: R? — R2
and U: R? — R? such that the matrices that represent 7' and S commute, while the
matrices that represent S and U do not commute. (Recall: we say that an n X m ma-
trix A represents a linear transformation T': R™ — R" if T'(v) = Av for all v € R™.)

Solution: ‘T‘

(s 0e ho= ol e
@) = Tad Ty ] =093V
S(TLdd) [\;}5 (o)) s TPy
SCuei)= T 96 1 04ET ff%%’j?’w
, ) » ' %,g 1}2, B v

Page 4



2. (4 points in total) Let A = {gg _0055} and B = [(1) _01]
e (2 points) Give a geometric interpretation of the transformations represented by JrL
A and B. (In words, or using a drawing.) %
™ Z_

Solution: (: x 2.5 ) ¥ (“ x0.8) =) JL
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linear transformation represented by AB.

e (2 points) Draw the images of the standard basis unit vectors of R? under the

N

Solution:

Lee T(T)= ABY
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Page 5




Problem 3 (10 points in total)

Consider the following system of three linear equations in the variables z1, z9, z3, z4:

209+ x4 =1
T1+x3=1
T4=1

1. (4 points) Solve the system using the Gauss-Jordan elimination algorithm.

Solution:
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2. (3 points) Let by, ba, b3 be arbitrary real numbers. How many solutions does the
system

2xo + x4 = by
z1+ 23 = by
CU4=b3
have?
Solution: 6o 2 O
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3. (3 points) Let A be any n x n matrix. Is there always a sequence of elementary row
operations that transforms the identity matrix I,, into A? You should motivate your
answer.
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Problem 4 (10 points in total)

1. (2 points) Write down the definition of invertible matrix.
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2. (2 points) Give an example of a linear transformation T': R?> — R? such that the
matrix that represents T is not invertible.

Solution:
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3. (4 points) Consider the following matrix

1

w

2
A= 3
1

ﬂ

2
3

Is A invertible? If yes, compute its inverse.

‘ ' F{Le
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4. (2 points) Let A be an n x n matrix. Assume that A is not invertible. How many
solutions does the system Az = b have?

Solution: T\lf\eVe‘ A LU S e
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Problem 5 (10 points total; 2 points each)

Answer the following questions with true or false.

1. Any 4 x 3 matrix with rank equal to 3 is invertible.

-Cm\SQ

2. Let 6 and 7 be any two angles with 6 # 1. Let Ty: R? — R? be the counterclockwise
rotation in R? through 6, and Ty: R?°— R? the counterclockwise rotation in R?
through . Then T;) 0 Ty =Ty o T5,.

Trye

3. There exists a real number a for which the following matrix is in reduced row echelon
form: :

O O
— 8 O
O = O
o R

‘Fo\\Se

‘ 2
4. The transformation T: R? — R? defined by T ([Ul}) = [Ul +2u + 1} is linear.
V2 V1 + Vo

Fa\é@

5. A linear transformation T': R™ — R™ is invertible if and only if for every v € R"
there exists a unique w € R™ such that T'(v) = w.

Tv Vid
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Use this sheet of paper if you need additional space.

Page 11




Use this sheet of paper if you need additional space.
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