Math 33A Final Exam
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v + 5 pts Minor error (matrix off by one or two
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QUESTION 8
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- 2 pts No answer
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1. (5 points) Suppose that A is a 5 x 4 matrix of the form
|
A= U] Uy U5 Uy
L

is in the kernel of A, write ¥, as a linear combination of the vectors

8

U1, Up, and Us. ,Box your answer. '

-

Given that the vector

T ¢ 3 =) s Q

: g
8\/‘3 = “Y\Z; -5y .)\*‘;
- |

S S . % - ( 3
- lglv{ <Vt hVy |

2. (5 points) Suppose that the linear transformation 7' : R® — R3 is the orthogonal projection onto
the plane 3z; +x3 — 223 = 0. Find a basis for im(7") and a basis for ker(T"). @ox your answers.

gz -3, 4 214 < - N \ ol
753"(2_tk & __51 (‘} '{. l Y
= __%S.{ 7( 1 _Oi [ ‘
(‘ = § f(/;j (

I pegs o D2 |
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3. (8 points) For each of the 2 X 2 matrices A below, there is an invertible matrix S such that
"B = S~1AS is either a diagonal matrix [g 21 or a rotation-scaling matrix {z —C-Lb:| . Find B in
each case (you do not have to find 5). '

@ a=% 3

chay. ‘eow '

det [A-AT) = AT- tel At detA
0= A*-3A+ U

$iveu-el gy
’l, i e

L

-
-

= 41t % Lti A2 H-(

M?L‘[ ‘O; |
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4. (10 points) Let T'(Z) = AZ be the linear transformation with matrix

4 -3 2
A=]-2 3 2
5 —5 4
(a) Let B be the basis of R? given by
| 1 0 0
n= (1], th=|0, T3=|-1
0 1 0

Find the matrix of T in the basis B.
(Another way to say this is: find a matrix B such that [T(Z)]s = B|Z]s.)

y -3 % “'l REEEERR

a
=

-2 3 2 IR I T B
o 1 O \! _‘ I )
S5 - s Yy = L
. 1 o0- ] 2
I 3 L Wh ij <
=] 5 7 il 0 ‘ : [ ‘g)
!\ /S & l‘» ( | ()
' e % 37 S
(T & ﬁ “ 0 - J\ \ r_
| =2 % | =1 - - R
. j ; | | \ S i L J"®
L 2 § > )L 7
vz
e 1 0 5§ 1z
L

(b) Find the eigenvalues of A, repeating any eigenvalues according to their algebraic multiplic-
ities. (So if Ay = 17 has algebraic multiplicity 2, list it twice.)

Hint: use your answer from part (a), which should be nice enough that you don’t need to
compute a determinant for this part.

v | - > 'moatalinl) g \ . / 1< vy s ¥ NY
b OY Wattve ¢£§ lapve Someée <€Ggen €2 = i ) Aré€ Q1Y /
LAY MATYC €5 AR : N,

A \/ ‘/“-”{1\;‘\ Y - "‘1‘1 1 4.-\V.‘/H'('!v“
{::I E)OH\( m{;'\j{( (,\:"/E\‘\ ,;/‘(“l",‘l“/,\\i\/»a.(/\vl I! r/-kl(‘/ a{ (7 () 6“/‘ _/(/{)5) ?\
0 Voo

) iAoty - /)\(, \ ) />\l: S' l) g = @

<
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5. (10 points) Make sure to fully justify your answers on this page.

Suppose that A is a symmetric n x n matrix (this is an assumption for both (a) and (b) below).

(a) Show that A¥- @ = ¥ - Aw for any two vectors ¥ and W in R™
Hint: remember that another way to write the dot product is Z - g=iTy.

AV- W = (AW

. VW)

-
LU

(‘D\ 6(0‘/\/\ we i >

(b) Suppose that ¥ and W are eigenvectors of A with eigenvalues A and u, respectively. Show
that if A # p then 4 is orthogonal to .

ad.@: AR s Al
3pas i s p )
pid - I se @) s p A,

O‘# }u, 50 (Vﬁ) must @qwf,\ﬁ i 0. |

- = =)
e Woduc‘(, A ¥ U/Iemgovt \/ OV(}MD@ onad to W
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6.

{

(12 points) Define

A=

205 O
O O = O
(o i = o [ s
= O = O

(a) Find the eigenvalues of 4 and state the algebraic multiplicity of each eigenvalue.

(No justification needed for this part.)

0, abmy(0)=2

Iy od mw (1) = 2.

(b) Find a basis for each eigenspace. )
| i "

EO = ‘LQYUA\) = 3&)0"(] 0] : 0 (;’//."'."/,:
\

0 l b

3 R r\ 0o (@) 6} T

b= My (A1) - py o ° 0 v - 5%‘/\“
| 0o 0 -| 0 . \‘1\/
lo O 0 0O

(c) State the geometric multiplicity of each eigenvalue.
Gemv (0) =2
Gemu OER
C

(d) Is A diagonalizable? Justify your answer.

4

</J “ A

no, because aemy = > F 2o
8]

Page 5



3: sAS A sps!

. (10 points) For this question, it may be helpful to know that

21 0 ~1/v/2 1/V/6 1/V3
[1 i 1} :[ 0 —2/\/6 1/\/3}
01

2 0 0] [-1/v2 0 1/V2

{0 0 0} [1/\/6 —2//6 1/\/6].
2 1/v2 1/v/6 1/v/3] [0 0

B

3 L1/v3  1/V3 1/V3
<!

Find a singular value decomposition A = UZVT of the matrix
1 0 -1
= {1 1 1 } '
Write your answer in the form rU something, ¥ = something, V = something. :
il I 7
WeaAs |, L 0 - ‘ |
,\ \

e(am\(ﬂ TR Ne 1, /3 e,

singul av velyes: (T\:\)gl oy
=) ,\/\}’B o l/\/T]
vy 2 Lll\ﬁ\ ¥ 2 0

JAER W2

o - _ 5 N
A S T N g Loy . [0o
\\—ﬁ}‘\v\’gL | \\\\\\' 77&6\ Ll

e AT ‘0 o 03 W T
. 1%~ RELS - | 'W3 0 VT
A PR M IR

ek ! I’L\; Mé v ! ;

o | /\F? W3 \/\B \ Y

0 /} Jy 00 V7 \\ \NZ © | \/’1__ = KU \
Y \\ o O3y AL W ) L

0
- 1 D =\
W g/ \/l - \ A U \ ) OT kS
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8. (20 points) True/False (circle the correct answer). You do not need to justify your answer.

Remember that True means always true. If a statement is sometimes true, but sometimes false,
mark it False. ‘

(a) Every 5 x 5 matrix has a real eigenvalue.

| @ False

(b) If A is an n x n matrix such that im(A) = {0} then A is invertible.

True CFE/f’s’eD

T AIPEATL
(c) If A is symmetric and U is orthogonal then UAUT is symmetric. ( (A U )" - / (17) A U
) : . » w¥akd
(“True ) False | YA
o = UAU

(d) If A is a symmetric matrix and ) is one of its eigenvalues, then A is also one of the singular

values of A.
True (Falss)

-1 Q *X
O
8§ 6 7 4 8 1
(¢) The matrices |5 3 0| and |5 1 6/ are similar.
g1 1 23 4 2

& AL tr - .
et (’I&:ue 2{@

(f) If ker(A®) = ker(A*) and ¥ is a vector in ker(A°®), then 7 is automatically in ker(A%).

) - +

X € oy NS

AS s P ' | - /’f‘ﬁﬁ False
\ > A7 ¢ v AT = Lo —

AULAR:D Py TS T

e, 2 I = |
NNO) 1 Alsadx 7 matrix then rank(A) + dim(ker(4)) = 4.
N ;

True (Fa,lsé‘ )

(h) If A is a symmetric n x n matrix such that A™ = 0 then A = 0.
( True,  False

(i) If A is an upper triangular n X n matrix such that A™ = 0 then A4 — 0.

True (F‘Enié/é ) }/ Q \- B
it <0 U
(j) If Ais an n x n matrix such that ||AZ|| = ||@|| for all # in R™ then A is an orthogonal matrix.

<6® False
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9. (20 points) Fill in the blanks with the matrices below (just write A, B, etc. in each blank). You
may use some items more than once, and there are some items that you will not use at all. If
none of the matrices on this list makes the statement true, write NONE.

A7)
00 0 1 1 0 0 -1 A | -1 0
A'[o o} B—[o o} C_{o 1 D‘L 0] E‘{o 0} F'{o' —1}
000 010 100 110 =1 0 0
B=10 8 0 H=0 01 J=1010 K=|011 L=|0 -1 0
000 000 0 0 1 000 0 0 -1

(a) Suppose that MZ = b is a linear system with 3 equations and 3 unknowns. If the system

has a unique solution then the reduced row echelon form of M equals (_ﬁ v

(b) Suppose that R is a 3 x 2 matrix and that S is a 2 X 3 matrix. If im(R) = ker(S) then
SH= A : /72*) =) /Kf\/i — 7/%2
VA S

(c) If M is a 2 x 2 rotation by 7 /6 radians counterclockwise, then M 8= E :
rotation by 37 (10°) st -1, smb- 0

(d) M= b is a 2 X 2 matrix such that im(M) = ker(M).

(e) M= _NONE _isa 3 x 3 matrix such that im(M) = ker(M).

V énle- mu.C;(;{(j

(f) A = 0 is the only eigenvalue of H . Furthermore, the algebraic multiplicity of A is
3 and the geometric multiplicity of A is 1.

(h) M = H is & matrix with rank 2 whose kernel is not {0}. "2 coYVect ansers
() T M is an orthogonal 3 x 3 matrix then M7M = MMT = J .
(i) D has complex (non-real) eigenvalues.
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You may use this page for scratch work.
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