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1. (10 pts, 2 pts each) Circle TRUE or FALSE for each statement:

(a) There is a linear transformation T: R® — R? for which nullity(T') =

2.
TRUE FALSE

then ker(C') C kerfd).
TRUE

(c) Let T:R™ — R™ be a linear transformation and 7,05 ..., 0, € R"
be linear dependent, vector, then T(th), (%), . . ., T(t},) may be lin-
early independent. -

TRUE FALSE -

(d) Let V and U be two subspaces of R, then dim(V) + dim(U) =
dim(V nU) +dim(V + U).

TRUE FALSE

AS: CB. B> SAS

(e) Let T(%) = AZ for some matrix A € R™®. If B is similar to A, then

B must be a B W“EMT for some basis B of R™.
TRUE FALSE
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2. (12 pts)Let V be the subspace of R* defined by the following equations

3x1—9x2+2$3—8$4 =0
21— 3re+3z3+ 224 = 0-

(a) (3 pts) Find a linear transformation 7:R* — R® such that ker(T) =
V.
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(b} (4 pts)Find a basis for V.
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(¢) (5 pts) Find a linear transformation 5 from £F 1o R4 such that

1
ker(S) = span ({ 1 }) and im(S) = V.
~1

/o34 &= 0.
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3. (12 pts) Let A be the matrix :
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(a) (8 pts) Compute the QR factorization of A.
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(b) (4 pts)Find the orthogonal projectio
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4. (8 pts) Let 7(Z) = AZ with A = [ r)l :ﬂ Consider the basis B =

P A
h = ) and vy = I

Find the B-matrix B of T'.
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5. (8 pts) Let B = { [i} : {01} } and let V = span(B). Is the vector
0 1
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J in V 7 If so, find [Z]p.
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