19F-MATH33A-3 Midterm I

KADE ADAMS

TOTAL POINTS

45 / 50

QUESTION 1

- 1 14 / 15
 - $\sqrt{-1}$ pts (b) didn't check -3-2k not = 0
 - √ 0 pts perfect

QUESTION 2

- 2 13 / 15
 - √ + 1 pts (a) Said "yes" or "linear"
 - + 2 pts (a) Correct matrix
 - √ + 4 pts (b) Sensible work to compute inverse
 - √ + 3 pts (b) Correct inverse
 - $\sqrt{+3}$ pts (c) Set up some sensible method (row reduction or multiplying by inverse)
 - $\sqrt{+2}$ pts (c) Correct solution vector (give points if based on incorrect inverse, will deduct 1 below)
 - 1 pts Used incorrect inverse to find (c)
 - Points given based on incorrect matrix...

QUESTION 3

- 3 10 / 10
 - √ 0 pts Perfect

QUESTION 4

- 4 8 / 10
 - $\sqrt{-1}$ pts The relation between x and z is not right or lack the relation
 - √ 1 pts Wrong answer but depends on the wrong matrix/wrong relations

Midterm 1

Last Name:	Adams		
First Name:	Kade)
Student ID:	50512	3178	
Signature:	Thursy	Alla.	
Section:	Tuesday:	Thursday:	
	3A	3B	TA: LI, XIA
	3C	3D	TA: ANDERSON, AARON
	3E	3F	TA: JOHNSON, ALEXANDER

Instructions: Do not open this exam until instructed to do so. You will have 50 minutes to complete the exam. Please print your name and student ID number above, and circle the number of your discussion section. You may not use calculators, books, notes, or any other material to help you. Please make sure your phone is silenced and stowed where you cannot see it. You may use any available space on the exam for scratch work. If you need more scratch paper, please ask one of the proctors. You must show your work to receive credit. Please circle or box your final answers.

Organize your work, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly. I will grade only work on the exam paper, unless you clearly indicate your desire for me to grade work on additional pages.

- r

. .

Problem	Max	Score
1	15	
2	15	
3	10	
4	10	
Total	50	

· j		75	ī		· i		» į	
								10
						10		
	٠							
							(A)	
				*				
		4.						
			P.					

Summary of 2D Geometrical Linear Transformations

- Scaling: $kI_2 = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$.
- Projection: $P = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ where $a = u_1^2$, $b = u_1 u_2$ and $c = u_2^2 = 1 u_1^2$ (Unit vector of line L: $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$)
- Reflection: $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, where $a = 2u_1^2 1$ and $b = 2u_1u_2$ (Unit vector of line L: $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$).
- Rotation combined with a scaling : $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ (Note: scaling factor $r = \sqrt{a^2 + b^2}$, rotation angle $\theta = \tan^{-1}(b/a)$).
- Horizontal shear: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$, vertical shear $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

, V. .

1. (15 pts) Consider the linear system

$$\begin{cases} 3x_1 + kx_2 = 6 \\ kx_1 + x_2 = -3 \end{cases}$$

(a) (3 pts)Write the systems in matrix form and write down the corresponding augmented matrix.

$$\begin{bmatrix} 3 & K \end{bmatrix} \begin{bmatrix} X_1 \\ K \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \end{bmatrix} \begin{bmatrix} 3 & K \end{bmatrix} \begin{bmatrix} 6 \\ K \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix}$$

(b) (6 pts)Determine the values of k such that the above linear system is consistent.

(c) (6 pts)If k = 3, is the linear system consistent? If it is consistent, please find all the solutions.

$$\begin{bmatrix} 3 & 3 & | & 6 & | & -3 & | & -3 & | & -3 & | & -3 & | & -3 & | & -2 & | & & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | & -2 & | &$$

$$\begin{bmatrix} 1 & 1 & 2 & -62 \\ 0 & 1 & 4.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 - 2.5 \\ 0 & 1 & 4.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 - 2.5 \\ 0 & 1 & 4.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 - 2.5 \\ 0 & 1 & 4.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 - 2.5 \\ 0 & 1 & 4.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & -2.5 \\ 0 & 1 & 4.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 &$$

a û r. 2. (15 pts)Define the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ so that

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1 - 2x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + 3x_2 + 4x_3 \end{bmatrix}$$

(a) (3 pts) Is this transormation linear? If so find its matrix A.

$$X_{1}\begin{bmatrix}1\\1\\1\end{bmatrix} + X_{2}\begin{bmatrix}-2\\1\\1\end{bmatrix} + X_{3}\begin{bmatrix}1\\4\\4\end{bmatrix} \qquad A = \begin{bmatrix}1-2\\1&1\\4\end{bmatrix}$$

(b) (7 pts) Is A invertible? If A is invertible, please find A^{-1} .

A is invertible
$$\begin{bmatrix} 1 & -2 & 1 & 1 & 60 \\ 1 & 1 & 0 & 10 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 1 & 00 \\ 0 & 30 & 1 & 10 & 10 \\ 0 & 3 & 3 & 1 & 10 & 1 \end{bmatrix} = 3 \rightarrow \begin{bmatrix} 0 & 10 & 1 & 1 & 1 \\ 0 & 3 & 3 & 1 & 1 & 1 \\ 0 & 3 & 3 & 1 & 1 & 1 \end{bmatrix} = 3r_2$$

(c) (5 pts) If there is any, find a vector \vec{v} such that $T(\vec{v}) = \vec{b}$ where

est.	5.4		eng ²	a'
		b		
and the second				
ý				
A.			1	

3. (10 pts) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation for which

$$T(\vec{e_1}) = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $T(\vec{e_2}) = \begin{bmatrix} -4 \\ 2 \\ 1 \end{bmatrix}$.

Write down an expression for the matrix of the linear transformation from \mathbb{R}^2 to \mathbb{R}^3 described as follows: first rotate all vectors in the plane by 30° counterclockwise, then project onto the line spanned by $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$, then make the resulting vector 3 times longer, and finally apply T. (You do not need to actually multiply the matrices.)

$$I = \begin{bmatrix} 3 & 1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} k^{2} \end{bmatrix}$$

$$\begin{bmatrix} 2 & -4 \\ -1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 9/25 & -12/25 \\ -12/25 & 16/25 \end{bmatrix} \begin{bmatrix} 93/2 & -1/2 \\ 1/2 & 91/2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2$$

$$\cos(30^\circ) = \frac{1}{3}$$

	$\mathbf{e}^{[i]}$		÷ 4		× ()		*1	
		,						
			٠					
v					s - 8	7		
						7		
			ş					

4. (10 pts) Suppose
$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y-3z \\ 2x+3y-5z \end{bmatrix}$$
. What is $\ker(T)$?

$$\times \begin{bmatrix} 5 \end{bmatrix} + 4 \begin{bmatrix} 3 \end{bmatrix} + 5 \begin{bmatrix} -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 3 & -6 \end{bmatrix} \qquad T \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} = 0$$

$$\begin{bmatrix} 1 & 1 & -3 & | & 0 \\ 2 & 3 & -5 & | & 0 \end{bmatrix} - 2r, \quad 3 \begin{bmatrix} 0 & 1 & | & 0 \\ 0 & 1 & | & | & 0 \end{bmatrix} - r_2 \begin{bmatrix} 0 & -4 & | & 0 \\ 0 & 1 & | & | & 0 \end{bmatrix}$$

$$\begin{array}{cccc} x - 4 + = 0 & x = \frac{x}{4} \\ x + 2 = 0 & z = -x & \begin{bmatrix} x \\ 4 \\ -y \end{bmatrix} \end{array}$$

$$ker(t) = span(\begin{bmatrix} i \\ -i \end{bmatrix})$$

	ΜÎ		- 1		÷.		- 1
6							
		•					
						ŧ	
							·
							č
					i		
19							
					V N N		

					Thirting account
Addition of	general and a second of	d graye year			9
	•				
			\overline{x}		
					E
	w.				
			¥		
					*
	£.				
j					
				•	
A. N					
5 0			7		
15					

. . i.i.