First Name:	ID#_	
Last Name:	 ſa	Tuesday with Laackman
	b	Tuesday with Laackman Thursday with Laackman
Section:	_] c	Tuesday with Sella
	 - d	Thursday with Sella
	e	Tuesday with Bellis
	f	Thursday with Bellis

- Rules.
- This is a 50 minute exam.
- There are FIVE problems; ten points per problem.
- There are extra pages each problem. You may also use the backs of pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- $\bullet\,$ Turn off your cell-phone, pager,...

1	2	3	4	5	Σ
8	7	9	10	7	4/

(1) (a) True False: Suppose A is invertible and has QR decomposition A = QR, then the columns of Q^T are orthonormal.

(b)
$$\det \left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \right) =$$

(c) Let \vec{u} and \vec{v} be non-zero vectors in \mathbb{R}^n . For which number t is

$$\vec{u} + t\vec{v}$$

closest to the origin?

(d) The volume of the parallelepiped generated by $\begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 2 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

(e) For $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$, find the vector in im(A) that is closest to $\vec{0}$.

(2) Let
$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \\ 0 & -4/5 & 3/5 \end{bmatrix}$$
 and suppose we have two bases \mathcal{B} and \mathcal{E} for \mathbb{R}^3 that are related by

$$\begin{array}{ccc}
 & 16 & |\vec{x}|_{\mathcal{B}} = C[\vec{x}]_{\mathcal{E}} \\
 & -\frac{25}{25} = 1
\end{array}$$

(b) True / False:
$$C^{-1}$$
 and C^{T} commute.

(c) If
$$[\vec{x}]_{\mathcal{B}} \cdot [\vec{y}]_{\mathcal{B}} = 7$$
 for some specific vectors \vec{x} and \vec{y} , what is $[\vec{x}]_{\mathcal{E}} \cdot [\vec{y}]_{\mathcal{E}}$?

(d) Let
$$T$$
 be a linear transformation. Compute $[T]_{\mathcal{B}}$ given that

$$[T]_{\mathcal{E}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\frac{-16}{5} + \frac{6}{5} = \frac{-6}{5} + \frac{12}{5} = \frac{-6}{25} + \frac{12}{5} = \frac{60}{25}$$

$$\frac{-16}{5} + \frac{16}{5} = \frac{-6}{9} = \frac{16}{5}$$

$$T_{B} = (T_{B}(-1) \frac{3}{-10} \frac{3}{36})$$

$$= (T_{B}(-1) \frac{3}{-10} \frac{3}{-10} \frac{3}{-10})$$

$$= (T_{B}(-1) \frac{3}{-10} \frac{3}{-10} \frac{3}{-10})$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 6 & 5 & 4 \\
0 & -8 & 5 & 3 & 6 \\
0 & -8 & 5 & 3 & 6 \\
0 & -8 & 3 & 7
\end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

(a) Find a basis for
$$im(A)$$

(b) Find the vector
$$\vec{v}$$
 in im(A) that is closest to $\begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}$.

$$\alpha.im(A) = \begin{cases} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{cases}$$

$$V_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} V_2^{1} = V_2 - V_2^{11} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \frac{1}{4} (2) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

$$\int_{1}^{1} A(A) = span \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{-1}{2} \right) \frac{1}{12} \left(\frac{1}{2} \right) \frac{1}{12} \left(\frac{1}{2}$$

$$\frac{1}{\sqrt{2}} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ \frac{$$

(4) (a) Finish the following definition:

We say that the vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_m$ are orthonormal if ... each vector is orthogonal to the others and has a length of one,

b True / False: Orthonormal vectors are linearly independent.

$$\sqrt{\text{(c) Compute det}} \left(\begin{bmatrix} 1 & 1 & 5 & 6 \\ 0 & 2 & 3 & 7 \\ 0 & 4 & 5 & 8 \\ 2 & 2 & 10 & 9 \end{bmatrix} \right) \cdot -\gamma} det \begin{bmatrix} 1 & 5 & 6 \\ 0 & 2 & 3 & 7 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \times 2 \times -1 \times -3 & -2 & 6 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

(5) (a) Perform a
$$QR$$
 decomposition of the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 3 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

$$\frac{1}{U_1} = \frac{1}{2} \left[\frac{1}{12} \right] = \left[\frac{1}{12} \right]$$

$$V_{2}^{\perp} = \begin{bmatrix} \frac{2}{60} \\ \frac{2}{6} \end{bmatrix} - 2 \begin{bmatrix} \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} - \frac{1}{12} \\ \frac{1}{12} \end{bmatrix}$$

$$\overrightarrow{U}_{z} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1/2 & 1/2 & -1/6 \\ 1/2 & -1/2 & 2/56 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & -1/56 \end{bmatrix} \qquad R = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 56 \end{bmatrix}$$

 $\overrightarrow{U_3} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} \times$

$$R = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$